| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbsng | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through the singleton of a class. csbsng 4243 is derived from the virtual deduction proof csbsngVD 39129. (Contributed by Alan Sare, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| csbsng | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbab 4008 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} | |
| 2 | sbceq2g 3990 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵)) | |
| 3 | 2 | abbidv 2741 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}) |
| 4 | 1, 3 | syl5eq 2668 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}) |
| 5 | df-sn 4178 | . . 3 ⊢ {𝐵} = {𝑦 ∣ 𝑦 = 𝐵} | |
| 6 | 5 | csbeq2i 3993 | . 2 ⊢ ⦋𝐴 / 𝑥⦌{𝐵} = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} |
| 7 | df-sn 4178 | . 2 ⊢ {⦋𝐴 / 𝑥⦌𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} | |
| 8 | 4, 6, 7 | 3eqtr4g 2681 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {cab 2608 [wsbc 3435 ⦋csb 3533 {csn 4177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 df-sn 4178 |
| This theorem is referenced by: csbprg 4244 csbopg 4420 csbpredg 33172 csbfv12gALTOLD 39052 csbfv12gALTVD 39135 |
| Copyright terms: Public domain | W3C validator |