| Step | Hyp | Ref
| Expression |
| 1 | | csbuni 4466 |
. . 3
⊢
⦋𝐴 /
𝑥⦌∪ {𝑓
∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = ∪
⦋𝐴 / 𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} |
| 2 | | csbab 4008 |
. . . . 5
⊢
⦋𝐴 /
𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ [𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} |
| 3 | | sbcex2 3486 |
. . . . . . 7
⊢
([𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧[𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) |
| 4 | | sbc3an 3494 |
. . . . . . . . 9
⊢
([𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ([𝐴 / 𝑥]𝑓 Fn 𝑧 ∧ [𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) |
| 5 | | sbcg 3503 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑓 Fn 𝑧 ↔ 𝑓 Fn 𝑧)) |
| 6 | | sbcan 3478 |
. . . . . . . . . . 11
⊢
([𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ ([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧)) |
| 7 | | sbcssg 4085 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) |
| 8 | | csbconstg 3546 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑧 = 𝑧) |
| 9 | 8 | sseq1d 3632 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ↔ 𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) |
| 10 | 7, 9 | bitrd 268 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ↔ 𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) |
| 11 | | sbcralg 3513 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑧 [𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧)) |
| 12 | | sbcssg 4085 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) ⊆ ⦋𝐴 / 𝑥⦌𝑧)) |
| 13 | 8 | sseq2d 3633 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) ⊆ ⦋𝐴 / 𝑥⦌𝑧 ↔ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧)) |
| 14 | | csbpredg 33172 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑦)) |
| 15 | | csbconstg 3546 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) |
| 16 | | predeq3 5684 |
. . . . . . . . . . . . . . . . . 18
⊢
(⦋𝐴 /
𝑥⦌𝑦 = 𝑦 → Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)) |
| 18 | 14, 17 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)) |
| 19 | 18 | sseq1d 3632 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) |
| 20 | 12, 13, 19 | 3bitrd 294 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) |
| 21 | 20 | ralbidv 2986 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (∀𝑦 ∈ 𝑧 [𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) |
| 22 | 11, 21 | bitrd 268 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) |
| 23 | 10, 22 | anbi12d 747 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧))) |
| 24 | 6, 23 | syl5bb 272 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧))) |
| 25 | | sbcralg 3513 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 [𝐴 / 𝑥](𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) |
| 26 | | sbceqg 3984 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ⦋𝐴 / 𝑥⦌(𝑓‘𝑦) = ⦋𝐴 / 𝑥⦌(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) |
| 27 | | csbconstg 3546 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑓‘𝑦) = (𝑓‘𝑦)) |
| 28 | | csbfv12 6231 |
. . . . . . . . . . . . . . 15
⊢
⦋𝐴 /
𝑥⦌(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) |
| 29 | | csbres 5399 |
. . . . . . . . . . . . . . . . 17
⊢
⦋𝐴 /
𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)) = (⦋𝐴 / 𝑥⦌𝑓 ↾ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦)) |
| 30 | | csbconstg 3546 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑓 = 𝑓) |
| 31 | 30, 18 | reseq12d 5397 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑓 ↾ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦)) = (𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))) |
| 32 | 29, 31 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)) = (𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))) |
| 33 | 32 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))) |
| 34 | 28, 33 | syl5eq 2668 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))) |
| 35 | 27, 34 | eqeq12d 2637 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌(𝑓‘𝑦) = ⦋𝐴 / 𝑥⦌(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) |
| 36 | 26, 35 | bitrd 268 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) |
| 37 | 36 | ralbidv 2986 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (∀𝑦 ∈ 𝑧 [𝐴 / 𝑥](𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) |
| 38 | 25, 37 | bitrd 268 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) |
| 39 | 5, 24, 38 | 3anbi123d 1399 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑓 Fn 𝑧 ∧ [𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ (𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) |
| 40 | 4, 39 | syl5bb 272 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ (𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) |
| 41 | 40 | exbidv 1850 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (∃𝑧[𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) |
| 42 | 3, 41 | syl5bb 272 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) |
| 43 | 42 | abbidv 2741 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ [𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) |
| 44 | 2, 43 | syl5eq 2668 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) |
| 45 | 44 | unieqd 4446 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∪
⦋𝐴 / 𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) |
| 46 | 1, 45 | syl5eq 2668 |
. 2
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪
{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) |
| 47 | | df-wrecs 7407 |
. . 3
⊢
wrecs(𝑅, 𝐷, 𝐹) = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} |
| 48 | 47 | csbeq2i 3993 |
. 2
⊢
⦋𝐴 /
𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = ⦋𝐴 / 𝑥⦌∪
{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} |
| 49 | | df-wrecs 7407 |
. 2
⊢
wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹) = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))} |
| 50 | 46, 48, 49 | 3eqtr4g 2681 |
1
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |