| Step | Hyp | Ref
| Expression |
| 1 | | df-rab 2921 |
. . 3
⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} |
| 2 | | r19.42v 3092 |
. . . . 5
⊢
(∃𝑛 ∈
(0..^(#‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) ↔ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)) |
| 3 | 2 | bicomi 214 |
. . . 4
⊢ ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)) |
| 4 | 3 | abbii 2739 |
. . 3
⊢ {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)} |
| 5 | | df-rex 2918 |
. . . 4
⊢
(∃𝑛 ∈
(0..^(#‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛(𝑛 ∈ (0..^(#‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))) |
| 6 | 5 | abbii 2739 |
. . 3
⊢ {𝑤 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(#‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))} |
| 7 | 1, 4, 6 | 3eqtri 2648 |
. 2
⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(#‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))} |
| 8 | | abid2 2745 |
. . . 4
⊢ {𝑛 ∣ 𝑛 ∈ (0..^(#‘𝑊))} = (0..^(#‘𝑊)) |
| 9 | | ovex 6678 |
. . . 4
⊢
(0..^(#‘𝑊))
∈ V |
| 10 | 8, 9 | eqeltri 2697 |
. . 3
⊢ {𝑛 ∣ 𝑛 ∈ (0..^(#‘𝑊))} ∈ V |
| 11 | | tru 1487 |
. . . . 5
⊢
⊤ |
| 12 | 11, 11 | pm3.2i 471 |
. . . 4
⊢ (⊤
∧ ⊤) |
| 13 | | ovexd 6680 |
. . . . . 6
⊢ (⊤
→ (𝑊 cyclShift 𝑛) ∈ V) |
| 14 | | eqtr3 2643 |
. . . . . . . . . . . . 13
⊢ ((𝑤 = (𝑊 cyclShift 𝑛) ∧ 𝑦 = (𝑊 cyclShift 𝑛)) → 𝑤 = 𝑦) |
| 15 | 14 | ex 450 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑊 cyclShift 𝑛) → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦)) |
| 16 | 15 | eqcoms 2630 |
. . . . . . . . . . 11
⊢ ((𝑊 cyclShift 𝑛) = 𝑤 → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦)) |
| 17 | 16 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦)) |
| 18 | 17 | com12 32 |
. . . . . . . . 9
⊢ (𝑦 = (𝑊 cyclShift 𝑛) → ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)) |
| 19 | 18 | ad2antlr 763 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑦
= (𝑊 cyclShift 𝑛)) ∧ ⊤) →
((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)) |
| 20 | 19 | alrimiv 1855 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑦
= (𝑊 cyclShift 𝑛)) ∧ ⊤) →
∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)) |
| 21 | 20 | ex 450 |
. . . . . 6
⊢
((⊤ ∧ 𝑦 =
(𝑊 cyclShift 𝑛)) → (⊤ →
∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))) |
| 22 | 13, 21 | spcimedv 3292 |
. . . . 5
⊢ (⊤
→ (⊤ → ∃𝑦∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))) |
| 23 | 22 | imp 445 |
. . . 4
⊢
((⊤ ∧ ⊤) → ∃𝑦∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)) |
| 24 | 12, 23 | mp1i 13 |
. . 3
⊢ (𝑛 ∈ (0..^(#‘𝑊)) → ∃𝑦∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)) |
| 25 | 10, 24 | zfrep4 4779 |
. 2
⊢ {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(#‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))} ∈ V |
| 26 | 7, 25 | eqeltri 2697 |
1
⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V |