MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsexa Structured version   Visualization version   GIF version

Theorem cshwsexa 13570
Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.)
Assertion
Ref Expression
cshwsexa {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V
Distinct variable groups:   𝑛,𝑉   𝑛,𝑊,𝑤
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem cshwsexa
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-rab 2921 . . 3 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)}
2 r19.42v 3092 . . . . 5 (∃𝑛 ∈ (0..^(#‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) ↔ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
32bicomi 214 . . . 4 ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))
43abbii 2739 . . 3 {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)}
5 df-rex 2918 . . . 4 (∃𝑛 ∈ (0..^(#‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛(𝑛 ∈ (0..^(#‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)))
65abbii 2739 . . 3 {𝑤 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(#‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))}
71, 4, 63eqtri 2648 . 2 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(#‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))}
8 abid2 2745 . . . 4 {𝑛𝑛 ∈ (0..^(#‘𝑊))} = (0..^(#‘𝑊))
9 ovex 6678 . . . 4 (0..^(#‘𝑊)) ∈ V
108, 9eqeltri 2697 . . 3 {𝑛𝑛 ∈ (0..^(#‘𝑊))} ∈ V
11 tru 1487 . . . . 5
1211, 11pm3.2i 471 . . . 4 (⊤ ∧ ⊤)
13 ovexd 6680 . . . . . 6 (⊤ → (𝑊 cyclShift 𝑛) ∈ V)
14 eqtr3 2643 . . . . . . . . . . . . 13 ((𝑤 = (𝑊 cyclShift 𝑛) ∧ 𝑦 = (𝑊 cyclShift 𝑛)) → 𝑤 = 𝑦)
1514ex 450 . . . . . . . . . . . 12 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦))
1615eqcoms 2630 . . . . . . . . . . 11 ((𝑊 cyclShift 𝑛) = 𝑤 → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦))
1716adantl 482 . . . . . . . . . 10 ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦))
1817com12 32 . . . . . . . . 9 (𝑦 = (𝑊 cyclShift 𝑛) → ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
1918ad2antlr 763 . . . . . . . 8 (((⊤ ∧ 𝑦 = (𝑊 cyclShift 𝑛)) ∧ ⊤) → ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
2019alrimiv 1855 . . . . . . 7 (((⊤ ∧ 𝑦 = (𝑊 cyclShift 𝑛)) ∧ ⊤) → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
2120ex 450 . . . . . 6 ((⊤ ∧ 𝑦 = (𝑊 cyclShift 𝑛)) → (⊤ → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)))
2213, 21spcimedv 3292 . . . . 5 (⊤ → (⊤ → ∃𝑦𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)))
2322imp 445 . . . 4 ((⊤ ∧ ⊤) → ∃𝑦𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
2412, 23mp1i 13 . . 3 (𝑛 ∈ (0..^(#‘𝑊)) → ∃𝑦𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
2510, 24zfrep4 4779 . 2 {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(#‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))} ∈ V
267, 25eqeltri 2697 1 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wtru 1484  wex 1704  wcel 1990  {cab 2608  wrex 2913  {crab 2916  Vcvv 3200  cfv 5888  (class class class)co 6650  0cc0 9936  ..^cfzo 12465  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator