MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsexa Structured version   Visualization version   Unicode version

Theorem cshwsexa 13570
Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.)
Assertion
Ref Expression
cshwsexa  |-  { w  e. Word  V  |  E. n  e.  ( 0..^ ( # `  W ) ) ( W cyclShift  n )  =  w }  e.  _V
Distinct variable groups:    n, V    n, W, w
Allowed substitution hint:    V( w)

Proof of Theorem cshwsexa
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-rab 2921 . . 3  |-  { w  e. Word  V  |  E. n  e.  ( 0..^ ( # `  W ) ) ( W cyclShift  n )  =  w }  =  { w  |  ( w  e. Word  V  /\  E. n  e.  ( 0..^ ( # `  W ) ) ( W cyclShift  n )  =  w ) }
2 r19.42v 3092 . . . . 5  |-  ( E. n  e.  ( 0..^ ( # `  W
) ) ( w  e. Word  V  /\  ( W cyclShift  n )  =  w )  <->  ( w  e. Word  V  /\  E. n  e.  ( 0..^ ( # `  W ) ) ( W cyclShift  n )  =  w ) )
32bicomi 214 . . . 4  |-  ( ( w  e. Word  V  /\  E. n  e.  ( 0..^ ( # `  W
) ) ( W cyclShift  n )  =  w )  <->  E. n  e.  ( 0..^ ( # `  W
) ) ( w  e. Word  V  /\  ( W cyclShift  n )  =  w ) )
43abbii 2739 . . 3  |-  { w  |  ( w  e. Word  V  /\  E. n  e.  ( 0..^ ( # `  W ) ) ( W cyclShift  n )  =  w ) }  =  {
w  |  E. n  e.  ( 0..^ ( # `  W ) ) ( w  e. Word  V  /\  ( W cyclShift  n )  =  w ) }
5 df-rex 2918 . . . 4  |-  ( E. n  e.  ( 0..^ ( # `  W
) ) ( w  e. Word  V  /\  ( W cyclShift  n )  =  w )  <->  E. n ( n  e.  ( 0..^ (
# `  W )
)  /\  ( w  e. Word  V  /\  ( W cyclShift  n )  =  w ) ) )
65abbii 2739 . . 3  |-  { w  |  E. n  e.  ( 0..^ ( # `  W
) ) ( w  e. Word  V  /\  ( W cyclShift  n )  =  w ) }  =  {
w  |  E. n
( n  e.  ( 0..^ ( # `  W
) )  /\  (
w  e. Word  V  /\  ( W cyclShift  n )  =  w ) ) }
71, 4, 63eqtri 2648 . 2  |-  { w  e. Word  V  |  E. n  e.  ( 0..^ ( # `  W ) ) ( W cyclShift  n )  =  w }  =  { w  |  E. n ( n  e.  ( 0..^ (
# `  W )
)  /\  ( w  e. Word  V  /\  ( W cyclShift  n )  =  w ) ) }
8 abid2 2745 . . . 4  |-  { n  |  n  e.  (
0..^ ( # `  W
) ) }  =  ( 0..^ ( # `  W
) )
9 ovex 6678 . . . 4  |-  ( 0..^ ( # `  W
) )  e.  _V
108, 9eqeltri 2697 . . 3  |-  { n  |  n  e.  (
0..^ ( # `  W
) ) }  e.  _V
11 tru 1487 . . . . 5  |- T.
1211, 11pm3.2i 471 . . . 4  |-  ( T. 
/\ T.  )
13 ovexd 6680 . . . . . 6  |-  ( T. 
->  ( W cyclShift  n )  e.  _V )
14 eqtr3 2643 . . . . . . . . . . . . 13  |-  ( ( w  =  ( W cyclShift  n )  /\  y  =  ( W cyclShift  n ) )  ->  w  =  y )
1514ex 450 . . . . . . . . . . . 12  |-  ( w  =  ( W cyclShift  n )  ->  ( y  =  ( W cyclShift  n )  ->  w  =  y ) )
1615eqcoms 2630 . . . . . . . . . . 11  |-  ( ( W cyclShift  n )  =  w  ->  ( y  =  ( W cyclShift  n )  ->  w  =  y ) )
1716adantl 482 . . . . . . . . . 10  |-  ( ( w  e. Word  V  /\  ( W cyclShift  n )  =  w )  ->  (
y  =  ( W cyclShift  n )  ->  w  =  y ) )
1817com12 32 . . . . . . . . 9  |-  ( y  =  ( W cyclShift  n )  ->  ( ( w  e. Word  V  /\  ( W cyclShift  n )  =  w )  ->  w  =  y ) )
1918ad2antlr 763 . . . . . . . 8  |-  ( ( ( T.  /\  y  =  ( W cyclShift  n ) )  /\ T.  )  ->  ( ( w  e. Word  V  /\  ( W cyclShift  n )  =  w )  ->  w  =  y ) )
2019alrimiv 1855 . . . . . . 7  |-  ( ( ( T.  /\  y  =  ( W cyclShift  n ) )  /\ T.  )  ->  A. w ( ( w  e. Word  V  /\  ( W cyclShift  n )  =  w )  ->  w  =  y ) )
2120ex 450 . . . . . 6  |-  ( ( T.  /\  y  =  ( W cyclShift  n )
)  ->  ( T.  ->  A. w ( ( w  e. Word  V  /\  ( W cyclShift  n )  =  w )  ->  w  =  y ) ) )
2213, 21spcimedv 3292 . . . . 5  |-  ( T. 
->  ( T.  ->  E. y A. w ( ( w  e. Word  V  /\  ( W cyclShift  n )  =  w )  ->  w  =  y ) ) )
2322imp 445 . . . 4  |-  ( ( T.  /\ T.  )  ->  E. y A. w
( ( w  e. Word  V  /\  ( W cyclShift  n )  =  w )  ->  w  =  y )
)
2412, 23mp1i 13 . . 3  |-  ( n  e.  ( 0..^ (
# `  W )
)  ->  E. y A. w ( ( w  e. Word  V  /\  ( W cyclShift  n )  =  w )  ->  w  =  y ) )
2510, 24zfrep4 4779 . 2  |-  { w  |  E. n ( n  e.  ( 0..^ (
# `  W )
)  /\  ( w  e. Word  V  /\  ( W cyclShift  n )  =  w ) ) }  e.  _V
267, 25eqeltri 2697 1  |-  { w  e. Word  V  |  E. n  e.  ( 0..^ ( # `  W ) ) ( W cyclShift  n )  =  w }  e.  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   T. wtru 1484   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916   _Vcvv 3200   ` cfv 5888  (class class class)co 6650   0cc0 9936  ..^cfzo 12465   #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator