| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfopab | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) (Unnecessary distinct variable restrictions were removed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| nfopab.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfopab | ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 4713 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | nfv 1843 | . . . . . 6 ⊢ Ⅎ𝑧 𝑤 = 〈𝑥, 𝑦〉 | |
| 3 | nfopab.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
| 4 | 2, 3 | nfan 1828 | . . . . 5 ⊢ Ⅎ𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 5 | 4 | nfex 2154 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 6 | 5 | nfex 2154 | . . 3 ⊢ Ⅎ𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 7 | 6 | nfab 2769 | . 2 ⊢ Ⅎ𝑧{𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 8 | 1, 7 | nfcxfr 2762 | 1 ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 384 = wceq 1483 ∃wex 1704 Ⅎwnf 1708 {cab 2608 Ⅎwnfc 2751 〈cop 4183 {copab 4712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-opab 4713 |
| This theorem is referenced by: nfmpt 4746 csbopab 5008 csbopabgALT 5009 nfxp 5142 nfco 5287 nfcnv 5301 |
| Copyright terms: Public domain | W3C validator |