MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabss Structured version   Visualization version   GIF version

Theorem opabss 4714
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
opabss {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅
Distinct variable groups:   𝑥,𝑅   𝑦,𝑅

Proof of Theorem opabss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 4713 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)}
2 df-br 4654 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
3 eleq1 2689 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
43biimpar 502 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → 𝑧𝑅)
52, 4sylan2b 492 . . . 4 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝑧𝑅)
65exlimivv 1860 . . 3 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝑧𝑅)
76abssi 3677 . 2 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)} ⊆ 𝑅
81, 7eqsstri 3635 1 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wss 3574  cop 4183   class class class wbr 4653  {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-in 3581  df-ss 3588  df-br 4654  df-opab 4713
This theorem is referenced by:  aceq3lem  8943  fullfunc  16566  fthfunc  16567  isfull  16570  isfth  16574
  Copyright terms: Public domain W3C validator