![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmoval | Structured version Visualization version GIF version |
Description: Value of the primorial function for nonnegative integers. (Contributed by AV, 28-Aug-2020.) |
Ref | Expression |
---|---|
prmoval | ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-prmo 15736 | . . 3 ⊢ #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))) |
3 | oveq2 6658 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
4 | 3 | prodeq1d 14651 | . . 3 ⊢ (𝑛 = 𝑁 → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) |
5 | 4 | adantl 482 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 = 𝑁) → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) |
6 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
7 | prodex 14637 | . . 3 ⊢ ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V | |
8 | 7 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V) |
9 | 2, 5, 6, 8 | fvmptd 6288 | 1 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ifcif 4086 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 1c1 9937 ℕ0cn0 11292 ...cfz 12326 ∏cprod 14635 ℙcprime 15385 #pcprmo 15735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seq 12802 df-prod 14636 df-prmo 15736 |
This theorem is referenced by: prmocl 15738 prmo0 15740 prmo1 15741 prmop1 15742 prmdvdsprmo 15746 prmolefac 15750 prmodvdslcmf 15751 prmgapprmo 15766 |
Copyright terms: Public domain | W3C validator |