MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmoval Structured version   Visualization version   GIF version

Theorem prmoval 15737
Description: Value of the primorial function for nonnegative integers. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmoval (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
Distinct variable group:   𝑘,𝑁

Proof of Theorem prmoval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-prmo 15736 . . 3 #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
21a1i 11 . 2 (𝑁 ∈ ℕ0 → #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)))
3 oveq2 6658 . . . 4 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
43prodeq1d 14651 . . 3 (𝑛 = 𝑁 → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
54adantl 482 . 2 ((𝑁 ∈ ℕ0𝑛 = 𝑁) → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
6 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
7 prodex 14637 . . 3 𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V
87a1i 11 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V)
92, 5, 6, 8fvmptd 6288 1 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  ifcif 4086  cmpt 4729  cfv 5888  (class class class)co 6650  1c1 9937  0cn0 11292  ...cfz 12326  cprod 14635  cprime 15385  #pcprmo 15735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-prod 14636  df-prmo 15736
This theorem is referenced by:  prmocl  15738  prmo0  15740  prmo1  15741  prmop1  15742  prmdvdsprmo  15746  prmolefac  15750  prmodvdslcmf  15751  prmgapprmo  15766
  Copyright terms: Public domain W3C validator