Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafv2 Structured version   Visualization version   GIF version

Theorem dfafv2 41212
Description: Alternative definition of (𝐹'''𝐴) using (𝐹𝐴) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
dfafv2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)

Proof of Theorem dfafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv 41197 . 2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), V)
2 df-fv 5896 . . . 4 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
32eqcomi 2631 . . 3 (℩𝑥𝐴𝐹𝑥) = (𝐹𝐴)
4 ifeq1 4090 . . 3 ((℩𝑥𝐴𝐹𝑥) = (𝐹𝐴) → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), V) = if(𝐹 defAt 𝐴, (𝐹𝐴), V))
53, 4ax-mp 5 . 2 if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), V) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
61, 5eqtri 2644 1 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  Vcvv 3200  ifcif 4086   class class class wbr 4653  cio 5849  cfv 5888   defAt wdfat 41193  '''cafv 41194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-un 3579  df-if 4087  df-fv 5896  df-afv 41197
This theorem is referenced by:  afveq12d  41213  nfafv  41216  afvfundmfveq  41218  afvnfundmuv  41219  afvpcfv0  41226
  Copyright terms: Public domain W3C validator