![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvpcfv0 | Structured version Visualization version GIF version |
Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvpcfv0 | ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfafv2 41212 | . . 3 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
2 | 1 | eqeq1i 2627 | . 2 ⊢ ((𝐹'''𝐴) = V ↔ if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V) |
3 | eqcom 2629 | . . . 4 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V ↔ V = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V)) | |
4 | eqif 4126 | . . . 4 ⊢ (V = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V))) | |
5 | 3, 4 | bitri 264 | . . 3 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V))) |
6 | fveqvfvv 41204 | . . . . . 6 ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = ∅) | |
7 | 6 | eqcoms 2630 | . . . . 5 ⊢ (V = (𝐹‘𝐴) → (𝐹‘𝐴) = ∅) |
8 | 7 | adantl 482 | . . . 4 ⊢ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) → (𝐹‘𝐴) = ∅) |
9 | fvfundmfvn0 6226 | . . . . . . 7 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
10 | df-dfat 41196 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
11 | 9, 10 | sylibr 224 | . . . . . 6 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐹 defAt 𝐴) |
12 | 11 | necon1bi 2822 | . . . . 5 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹‘𝐴) = ∅) |
13 | 12 | adantr 481 | . . . 4 ⊢ ((¬ 𝐹 defAt 𝐴 ∧ V = V) → (𝐹‘𝐴) = ∅) |
14 | 8, 13 | jaoi 394 | . . 3 ⊢ (((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)) → (𝐹‘𝐴) = ∅) |
15 | 5, 14 | sylbi 207 | . 2 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V → (𝐹‘𝐴) = ∅) |
16 | 2, 15 | sylbi 207 | 1 ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∅c0 3915 ifcif 4086 {csn 4177 dom cdm 5114 ↾ cres 5116 Fun wfun 5882 ‘cfv 5888 defAt wdfat 41193 '''cafv 41194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-dfat 41196 df-afv 41197 |
This theorem is referenced by: afvfv0bi 41232 aovpcov0 41270 |
Copyright terms: Public domain | W3C validator |