Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdfat2 Structured version   Visualization version   GIF version

Theorem dfdfat2 41211
Description: Alternate definition of the predicate "defined at" not using the Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
dfdfat2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem dfdfat2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-dfat 41196 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 relres 5426 . . . 4 Rel (𝐹 ↾ {𝐴})
3 dffun8 5916 . . . 4 (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
42, 3mpbiran 953 . . 3 (Fun (𝐹 ↾ {𝐴}) ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
54anbi2i 730 . 2 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
6 vex 3203 . . . . . . . 8 𝑦 ∈ V
76brres 5402 . . . . . . 7 (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥𝐹𝑦𝑥 ∈ {𝐴}))
87a1i 11 . . . . . 6 (𝐴 ∈ dom 𝐹 → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥𝐹𝑦𝑥 ∈ {𝐴})))
98eubidv 2490 . . . . 5 (𝐴 ∈ dom 𝐹 → (∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦(𝑥𝐹𝑦𝑥 ∈ {𝐴})))
109ralbidv 2986 . . . 4 (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥𝐹𝑦𝑥 ∈ {𝐴})))
11 eldmressnsn 5439 . . . . 5 (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))
12 eldmressn 41203 . . . . 5 (𝑥 ∈ dom (𝐹 ↾ {𝐴}) → 𝑥 = 𝐴)
13 breq1 4656 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
1413anbi1d 741 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐹𝑦𝑥 ∈ {𝐴}) ↔ (𝐴𝐹𝑦𝑥 ∈ {𝐴})))
15 velsn 4193 . . . . . . . . 9 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
1615biimpri 218 . . . . . . . 8 (𝑥 = 𝐴𝑥 ∈ {𝐴})
1716biantrud 528 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝐹𝑦 ↔ (𝐴𝐹𝑦𝑥 ∈ {𝐴})))
1814, 17bitr4d 271 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐹𝑦𝑥 ∈ {𝐴}) ↔ 𝐴𝐹𝑦))
1918eubidv 2490 . . . . 5 (𝑥 = 𝐴 → (∃!𝑦(𝑥𝐹𝑦𝑥 ∈ {𝐴}) ↔ ∃!𝑦 𝐴𝐹𝑦))
2011, 12, 19ralbinrald 41199 . . . 4 (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥𝐹𝑦𝑥 ∈ {𝐴}) ↔ ∃!𝑦 𝐴𝐹𝑦))
2110, 20bitrd 268 . . 3 (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦))
2221pm5.32i 669 . 2 ((𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
231, 5, 223bitri 286 1 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  ∃!weu 2470  wral 2912  {csn 4177   class class class wbr 4653  dom cdm 5114  cres 5116  Rel wrel 5119  Fun wfun 5882   defAt wdfat 41193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-fun 5890  df-dfat 41196
This theorem is referenced by:  afveu  41233  rlimdmafv  41257
  Copyright terms: Public domain W3C validator