Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem1 Structured version   Visualization version   GIF version

Theorem dfon2lem1 31688
Description: Lemma for dfon2 31697. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
dfon2lem1 Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}

Proof of Theorem dfon2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 truni 4767 . 2 (∀𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}Tr 𝑦 → Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)})
2 nfsbc1v 3455 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
3 nfv 1843 . . . . 5 𝑥Tr 𝑦
4 nfsbc1v 3455 . . . . 5 𝑥[𝑦 / 𝑥]𝜓
52, 3, 4nf3an 1831 . . . 4 𝑥([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓)
6 vex 3203 . . . 4 𝑦 ∈ V
7 sbceq1a 3446 . . . . 5 (𝑥 = 𝑦 → (𝜑[𝑦 / 𝑥]𝜑))
8 treq 4758 . . . . 5 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
9 sbceq1a 3446 . . . . 5 (𝑥 = 𝑦 → (𝜓[𝑦 / 𝑥]𝜓))
107, 8, 93anbi123d 1399 . . . 4 (𝑥 = 𝑦 → ((𝜑 ∧ Tr 𝑥𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓)))
115, 6, 10elabf 3349 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)} ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓))
1211simp2bi 1077 . 2 (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)} → Tr 𝑦)
131, 12mprg 2926 1 Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}
Colors of variables: wff setvar class
Syntax hints:  w3a 1037  wcel 1990  {cab 2608  [wsbc 3435   cuni 4436  Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-in 3581  df-ss 3588  df-uni 4437  df-iun 4522  df-tr 4753
This theorem is referenced by:  dfon2lem3  31690  dfon2lem7  31694
  Copyright terms: Public domain W3C validator