| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > truni | Structured version Visualization version GIF version | ||
| Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| truni | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | triun 4766 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝑥 ∈ 𝐴 𝑥) | |
| 2 | uniiun 4573 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | treq 4758 | . . 3 ⊢ (∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 → (Tr ∪ 𝐴 ↔ Tr ∪ 𝑥 ∈ 𝐴 𝑥)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (Tr ∪ 𝐴 ↔ Tr ∪ 𝑥 ∈ 𝐴 𝑥) |
| 5 | 1, 4 | sylibr 224 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∀wral 2912 ∪ cuni 4436 ∪ ciun 4520 Tr wtr 4752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-iun 4522 df-tr 4753 |
| This theorem is referenced by: dfon2lem1 31688 |
| Copyright terms: Public domain | W3C validator |