Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem2 Structured version   Visualization version   GIF version

Theorem dfon2lem2 31689
Description: Lemma for dfon2 31697. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
dfon2lem2 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem dfon2lem2
StepHypRef Expression
1 simp1 1061 . . . 4 ((𝑥𝐴𝜑𝜓) → 𝑥𝐴)
21ss2abi 3674 . . 3 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ {𝑥𝑥𝐴}
3 df-pw 4160 . . 3 𝒫 𝐴 = {𝑥𝑥𝐴}
42, 3sseqtr4i 3638 . 2 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝒫 𝐴
5 sspwuni 4611 . 2 ({𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝒫 𝐴 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝐴)
64, 5mpbi 220 1 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  w3a 1037  {cab 2608  wss 3574  𝒫 cpw 4158   cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437
This theorem is referenced by:  dfon2lem3  31690  dfon2lem7  31694
  Copyright terms: Public domain W3C validator