Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem2 Structured version   Visualization version   Unicode version

Theorem dfon2lem2 31689
Description: Lemma for dfon2 31697. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
dfon2lem2  |-  U. {
x  |  ( x 
C_  A  /\  ph  /\ 
ps ) }  C_  A
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem dfon2lem2
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( x  C_  A  /\  ph 
/\  ps )  ->  x  C_  A )
21ss2abi 3674 . . 3  |-  { x  |  ( x  C_  A  /\  ph  /\  ps ) }  C_  { x  |  x  C_  A }
3 df-pw 4160 . . 3  |-  ~P A  =  { x  |  x 
C_  A }
42, 3sseqtr4i 3638 . 2  |-  { x  |  ( x  C_  A  /\  ph  /\  ps ) }  C_  ~P A
5 sspwuni 4611 . 2  |-  ( { x  |  ( x 
C_  A  /\  ph  /\ 
ps ) }  C_  ~P A  <->  U. { x  |  ( x  C_  A  /\  ph  /\  ps ) }  C_  A )
64, 5mpbi 220 1  |-  U. {
x  |  ( x 
C_  A  /\  ph  /\ 
ps ) }  C_  A
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 1037   {cab 2608    C_ wss 3574   ~Pcpw 4158   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437
This theorem is referenced by:  dfon2lem3  31690  dfon2lem7  31694
  Copyright terms: Public domain W3C validator