MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfres3 Structured version   Visualization version   GIF version

Theorem dfres3 5403
Description: Alternate definition of restriction. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfres3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × ran 𝐴))

Proof of Theorem dfres3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-res 5126 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 eleq1 2689 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
3 vex 3203 . . . . . . . . . . . 12 𝑧 ∈ V
43biantru 526 . . . . . . . . . . 11 (𝑦𝐵 ↔ (𝑦𝐵𝑧 ∈ V))
5 vex 3203 . . . . . . . . . . . . 13 𝑦 ∈ V
65, 3opelrn 5357 . . . . . . . . . . . 12 (⟨𝑦, 𝑧⟩ ∈ 𝐴𝑧 ∈ ran 𝐴)
76biantrud 528 . . . . . . . . . . 11 (⟨𝑦, 𝑧⟩ ∈ 𝐴 → (𝑦𝐵 ↔ (𝑦𝐵𝑧 ∈ ran 𝐴)))
84, 7syl5bbr 274 . . . . . . . . . 10 (⟨𝑦, 𝑧⟩ ∈ 𝐴 → ((𝑦𝐵𝑧 ∈ V) ↔ (𝑦𝐵𝑧 ∈ ran 𝐴)))
92, 8syl6bi 243 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐴 → ((𝑦𝐵𝑧 ∈ V) ↔ (𝑦𝐵𝑧 ∈ ran 𝐴))))
109com12 32 . . . . . . . 8 (𝑥𝐴 → (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐵𝑧 ∈ V) ↔ (𝑦𝐵𝑧 ∈ ran 𝐴))))
1110pm5.32d 671 . . . . . . 7 (𝑥𝐴 → ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ V)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ ran 𝐴))))
12112exbidv 1852 . . . . . 6 (𝑥𝐴 → (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ V)) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ ran 𝐴))))
13 elxp 5131 . . . . . 6 (𝑥 ∈ (𝐵 × V) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ V)))
14 elxp 5131 . . . . . 6 (𝑥 ∈ (𝐵 × ran 𝐴) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ ran 𝐴)))
1512, 13, 143bitr4g 303 . . . . 5 (𝑥𝐴 → (𝑥 ∈ (𝐵 × V) ↔ 𝑥 ∈ (𝐵 × ran 𝐴)))
1615pm5.32i 669 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵 × V)) ↔ (𝑥𝐴𝑥 ∈ (𝐵 × ran 𝐴)))
17 elin 3796 . . . 4 (𝑥 ∈ (𝐴 ∩ (𝐵 × ran 𝐴)) ↔ (𝑥𝐴𝑥 ∈ (𝐵 × ran 𝐴)))
1816, 17bitr4i 267 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵 × V)) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 × ran 𝐴)))
1918ineqri 3806 . 2 (𝐴 ∩ (𝐵 × V)) = (𝐴 ∩ (𝐵 × ran 𝐴))
201, 19eqtri 2644 1 (𝐴𝐵) = (𝐴 ∩ (𝐵 × ran 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cin 3573  cop 4183   × cxp 5112  ran crn 5115  cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  brrestrict  32056  dfrel6  34115
  Copyright terms: Public domain W3C validator