MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neldif Structured version   Visualization version   GIF version

Theorem neldif 3735
Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.)
Assertion
Ref Expression
neldif ((𝐴𝐵 ∧ ¬ 𝐴 ∈ (𝐵𝐶)) → 𝐴𝐶)

Proof of Theorem neldif
StepHypRef Expression
1 eldif 3584 . . . 4 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
21simplbi2 655 . . 3 (𝐴𝐵 → (¬ 𝐴𝐶𝐴 ∈ (𝐵𝐶)))
32con1d 139 . 2 (𝐴𝐵 → (¬ 𝐴 ∈ (𝐵𝐶) → 𝐴𝐶))
43imp 445 1 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ (𝐵𝐶)) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wcel 1990  cdif 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577
This theorem is referenced by:  peano5  7089  boxcutc  7951  etransc  40500
  Copyright terms: Public domain W3C validator