Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difres Structured version   Visualization version   GIF version

Theorem difres 29413
Description: Case when class difference in unaffected by restriction. (Contributed by Thierry Arnoux, 1-Jan-2020.)
Assertion
Ref Expression
difres (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶𝐵)) = (𝐴𝐶))

Proof of Theorem difres
StepHypRef Expression
1 df-res 5126 . . 3 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
21difeq2i 3725 . 2 (𝐴 ∖ (𝐶𝐵)) = (𝐴 ∖ (𝐶 ∩ (𝐵 × V)))
3 difindi 3881 . . . 4 (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴𝐶) ∪ (𝐴 ∖ (𝐵 × V)))
4 ssdif 3745 . . . . . . 7 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ((𝐵 × V) ∖ (𝐵 × V)))
5 difid 3948 . . . . . . 7 ((𝐵 × V) ∖ (𝐵 × V)) = ∅
64, 5syl6sseq 3651 . . . . . 6 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ∅)
7 ss0 3974 . . . . . 6 ((𝐴 ∖ (𝐵 × V)) ⊆ ∅ → (𝐴 ∖ (𝐵 × V)) = ∅)
86, 7syl 17 . . . . 5 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) = ∅)
98uneq2d 3767 . . . 4 (𝐴 ⊆ (𝐵 × V) → ((𝐴𝐶) ∪ (𝐴 ∖ (𝐵 × V))) = ((𝐴𝐶) ∪ ∅))
103, 9syl5eq 2668 . . 3 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴𝐶) ∪ ∅))
11 un0 3967 . . 3 ((𝐴𝐶) ∪ ∅) = (𝐴𝐶)
1210, 11syl6eq 2672 . 2 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = (𝐴𝐶))
132, 12syl5eq 2668 1 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶𝐵)) = (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915   × cxp 5112  cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-res 5126
This theorem is referenced by:  qtophaus  29903
  Copyright terms: Public domain W3C validator