Proof of Theorem imadifxp
| Step | Hyp | Ref
| Expression |
| 1 | | ima0 5481 |
. . . 4
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) “ ∅) =
∅ |
| 2 | | imaeq2 5462 |
. . . 4
⊢ (𝐶 = ∅ → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 ∖ (𝐴 × 𝐵)) “ ∅)) |
| 3 | | imaeq2 5462 |
. . . . . . 7
⊢ (𝐶 = ∅ → (𝑅 “ 𝐶) = (𝑅 “ ∅)) |
| 4 | | ima0 5481 |
. . . . . . 7
⊢ (𝑅 “ ∅) =
∅ |
| 5 | 3, 4 | syl6eq 2672 |
. . . . . 6
⊢ (𝐶 = ∅ → (𝑅 “ 𝐶) = ∅) |
| 6 | 5 | difeq1d 3727 |
. . . . 5
⊢ (𝐶 = ∅ → ((𝑅 “ 𝐶) ∖ 𝐵) = (∅ ∖ 𝐵)) |
| 7 | | 0dif 3977 |
. . . . 5
⊢ (∅
∖ 𝐵) =
∅ |
| 8 | 6, 7 | syl6eq 2672 |
. . . 4
⊢ (𝐶 = ∅ → ((𝑅 “ 𝐶) ∖ 𝐵) = ∅) |
| 9 | 1, 2, 8 | 3eqtr4a 2682 |
. . 3
⊢ (𝐶 = ∅ → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) |
| 10 | 9 | adantl 482 |
. 2
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐶 = ∅) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) |
| 11 | | inundif 4046 |
. . . . . . . . 9
⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ∪ (𝑅 ∖ (𝐴 × 𝐵))) = 𝑅 |
| 12 | 11 | imaeq1i 5463 |
. . . . . . . 8
⊢ (((𝑅 ∩ (𝐴 × 𝐵)) ∪ (𝑅 ∖ (𝐴 × 𝐵))) “ 𝐶) = (𝑅 “ 𝐶) |
| 13 | | imaundir 5546 |
. . . . . . . 8
⊢ (((𝑅 ∩ (𝐴 × 𝐵)) ∪ (𝑅 ∖ (𝐴 × 𝐵))) “ 𝐶) = (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) |
| 14 | 12, 13 | eqtr3i 2646 |
. . . . . . 7
⊢ (𝑅 “ 𝐶) = (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) |
| 15 | 14 | difeq1i 3724 |
. . . . . 6
⊢ ((𝑅 “ 𝐶) ∖ 𝐵) = ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) ∖ 𝐵) |
| 16 | | difundir 3880 |
. . . . . 6
⊢ ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) ∖ 𝐵) = ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ∪ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) |
| 17 | 15, 16 | eqtri 2644 |
. . . . 5
⊢ ((𝑅 “ 𝐶) ∖ 𝐵) = ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ∪ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) |
| 18 | | inss2 3834 |
. . . . . . . . 9
⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
| 19 | | imass1 5500 |
. . . . . . . . 9
⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) → ((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ⊆ ((𝐴 × 𝐵) “ 𝐶)) |
| 20 | | ssdif 3745 |
. . . . . . . . 9
⊢ (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ⊆ ((𝐴 × 𝐵) “ 𝐶) → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵)) |
| 21 | 18, 19, 20 | mp2b 10 |
. . . . . . . 8
⊢ (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵) |
| 22 | | xpima 5576 |
. . . . . . . . . . 11
⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) |
| 23 | | incom 3805 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) |
| 24 | | df-ss 3588 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∩ 𝐴) = 𝐶) |
| 25 | 24 | biimpi 206 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ⊆ 𝐴 → (𝐶 ∩ 𝐴) = 𝐶) |
| 26 | 23, 25 | syl5eqr 2670 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ⊆ 𝐴 → (𝐴 ∩ 𝐶) = 𝐶) |
| 27 | 26 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (𝐴 ∩ 𝐶) = 𝐶) |
| 28 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → 𝐶 ≠ ∅) |
| 29 | 27, 28 | eqnetrd 2861 |
. . . . . . . . . . . 12
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (𝐴 ∩ 𝐶) ≠ ∅) |
| 30 | | df-ne 2795 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ 𝐶) ≠ ∅ ↔ ¬ (𝐴 ∩ 𝐶) = ∅) |
| 31 | 30 | biimpi 206 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ¬ (𝐴 ∩ 𝐶) = ∅) |
| 32 | | iffalse 4095 |
. . . . . . . . . . . 12
⊢ (¬
(𝐴 ∩ 𝐶) = ∅ → if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) = 𝐵) |
| 33 | 29, 31, 32 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) = 𝐵) |
| 34 | 22, 33 | syl5eq 2668 |
. . . . . . . . . 10
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
| 35 | 34 | difeq1d 3727 |
. . . . . . . . 9
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵) = (𝐵 ∖ 𝐵)) |
| 36 | | difid 3948 |
. . . . . . . . 9
⊢ (𝐵 ∖ 𝐵) = ∅ |
| 37 | 35, 36 | syl6eq 2672 |
. . . . . . . 8
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵) = ∅) |
| 38 | 21, 37 | syl5sseq 3653 |
. . . . . . 7
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ ∅) |
| 39 | | ss0 3974 |
. . . . . . 7
⊢ ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ ∅ → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) = ∅) |
| 40 | 38, 39 | syl 17 |
. . . . . 6
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) = ∅) |
| 41 | | df-ima 5127 |
. . . . . . . . . . 11
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ran ((𝑅 ∖ (𝐴 × 𝐵)) ↾ 𝐶) |
| 42 | | df-res 5126 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) ↾ 𝐶) = ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) |
| 43 | 42 | rneqi 5352 |
. . . . . . . . . . 11
⊢ ran
((𝑅 ∖ (𝐴 × 𝐵)) ↾ 𝐶) = ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) |
| 44 | 41, 43 | eqtri 2644 |
. . . . . . . . . 10
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) |
| 45 | 44 | ineq1i 3810 |
. . . . . . . . 9
⊢ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∩ 𝐵) = (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ∩ 𝐵) |
| 46 | | xpss1 5228 |
. . . . . . . . . . . 12
⊢ (𝐶 ⊆ 𝐴 → (𝐶 × V) ⊆ (𝐴 × V)) |
| 47 | | sslin 3839 |
. . . . . . . . . . . 12
⊢ ((𝐶 × V) ⊆ (𝐴 × V) → ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V))) |
| 48 | | rnss 5354 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V))) |
| 49 | 46, 47, 48 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝐶 ⊆ 𝐴 → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V))) |
| 50 | 49 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V))) |
| 51 | | ssn0 3976 |
. . . . . . . . . . . 12
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅) → 𝐴 ≠ ∅) |
| 52 | 51 | ancoms 469 |
. . . . . . . . . . 11
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → 𝐴 ≠ ∅) |
| 53 | | inss1 3833 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 × V) ∩ 𝑅) ⊆ (𝐴 × V) |
| 54 | | ssdif 3745 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 × V) ∩ 𝑅) ⊆ (𝐴 × V) → (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵)) ⊆ ((𝐴 × V) ∖ (𝐴 × 𝐵))) |
| 55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵)) ⊆ ((𝐴 × V) ∖ (𝐴 × 𝐵)) |
| 56 | | incom 3805 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 × V) ∩ (𝑅 ∖ (𝐴 × 𝐵))) = ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) |
| 57 | | indif2 3870 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 × V) ∩ (𝑅 ∖ (𝐴 × 𝐵))) = (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵)) |
| 58 | 56, 57 | eqtr3i 2646 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) = (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵)) |
| 59 | | difxp2 5560 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 × (V ∖ 𝐵)) = ((𝐴 × V) ∖ (𝐴 × 𝐵)) |
| 60 | 55, 58, 59 | 3sstr4i 3644 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (𝐴 × (V ∖ 𝐵)) |
| 61 | | rnss 5354 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (𝐴 × (V ∖ 𝐵)) → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ ran (𝐴 × (V ∖ 𝐵))) |
| 62 | 60, 61 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝐴 ≠ ∅ → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ ran (𝐴 × (V ∖ 𝐵))) |
| 63 | | rnxp 5564 |
. . . . . . . . . . . . 13
⊢ (𝐴 ≠ ∅ → ran (𝐴 × (V ∖ 𝐵)) = (V ∖ 𝐵)) |
| 64 | 62, 63 | sseqtrd 3641 |
. . . . . . . . . . . 12
⊢ (𝐴 ≠ ∅ → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (V ∖ 𝐵)) |
| 65 | | disj2 4024 |
. . . . . . . . . . . 12
⊢ ((ran
((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅ ↔ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (V ∖ 𝐵)) |
| 66 | 64, 65 | sylibr 224 |
. . . . . . . . . . 11
⊢ (𝐴 ≠ ∅ → (ran
((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅) |
| 67 | 52, 66 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅) |
| 68 | | ssdisj 4026 |
. . . . . . . . . 10
⊢ ((ran
((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∧ (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅) → (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ∩ 𝐵) = ∅) |
| 69 | 50, 67, 68 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ∩ 𝐵) = ∅) |
| 70 | 45, 69 | syl5eq 2668 |
. . . . . . . 8
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∩ 𝐵) = ∅) |
| 71 | | disj3 4021 |
. . . . . . . 8
⊢ ((((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∩ 𝐵) = ∅ ↔ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) |
| 72 | 70, 71 | sylib 208 |
. . . . . . 7
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) |
| 73 | 72 | eqcomd 2628 |
. . . . . 6
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) = ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) |
| 74 | 40, 73 | uneq12d 3768 |
. . . . 5
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ∪ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) = (∅ ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶))) |
| 75 | 17, 74 | syl5eq 2668 |
. . . 4
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ((𝑅 “ 𝐶) ∖ 𝐵) = (∅ ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶))) |
| 76 | | uncom 3757 |
. . . . 5
⊢ (∅
∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) = (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∪ ∅) |
| 77 | | un0 3967 |
. . . . 5
⊢ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∪ ∅) = ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) |
| 78 | 76, 77 | eqtr2i 2645 |
. . . 4
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = (∅ ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) |
| 79 | 75, 78 | syl6reqr 2675 |
. . 3
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) |
| 80 | 79 | ancoms 469 |
. 2
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) |
| 81 | 10, 80 | pm2.61dane 2881 |
1
⊢ (𝐶 ⊆ 𝐴 → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) |