Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeldifid Structured version   Visualization version   GIF version

Theorem opeldifid 29412
Description: Ordered pair elementhood outside of the diagonal. (Contributed by Thierry Arnoux, 1-Jan-2020.)
Assertion
Ref Expression
opeldifid (Rel 𝐴 → (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴𝑋𝑌)))

Proof of Theorem opeldifid
StepHypRef Expression
1 reldif 5238 . . . 4 (Rel 𝐴 → Rel (𝐴 ∖ I ))
2 brrelex2 5157 . . . 4 ((Rel (𝐴 ∖ I ) ∧ 𝑋(𝐴 ∖ I )𝑌) → 𝑌 ∈ V)
31, 2sylan 488 . . 3 ((Rel 𝐴𝑋(𝐴 ∖ I )𝑌) → 𝑌 ∈ V)
4 brrelex2 5157 . . . 4 ((Rel 𝐴𝑋𝐴𝑌) → 𝑌 ∈ V)
54adantrr 753 . . 3 ((Rel 𝐴 ∧ (𝑋𝐴𝑌𝑋𝑌)) → 𝑌 ∈ V)
6 brdif 4705 . . . 4 (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌 ∧ ¬ 𝑋 I 𝑌))
7 ideqg 5273 . . . . . 6 (𝑌 ∈ V → (𝑋 I 𝑌𝑋 = 𝑌))
87necon3bbid 2831 . . . . 5 (𝑌 ∈ V → (¬ 𝑋 I 𝑌𝑋𝑌))
98anbi2d 740 . . . 4 (𝑌 ∈ V → ((𝑋𝐴𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋𝐴𝑌𝑋𝑌)))
106, 9syl5bb 272 . . 3 (𝑌 ∈ V → (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌𝑋𝑌)))
113, 5, 10pm5.21nd 941 . 2 (Rel 𝐴 → (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌𝑋𝑌)))
12 df-br 4654 . 2 (𝑋(𝐴 ∖ I )𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ))
13 df-br 4654 . . 3 (𝑋𝐴𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝐴)
1413anbi1i 731 . 2 ((𝑋𝐴𝑌𝑋𝑌) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴𝑋𝑌))
1511, 12, 143bitr3g 302 1 (Rel 𝐴 → (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  cop 4183   class class class wbr 4653   I cid 5023  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121
This theorem is referenced by:  qtophaus  29903
  Copyright terms: Public domain W3C validator