MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difun1 Structured version   Visualization version   GIF version

Theorem difun1 3887
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
Assertion
Ref Expression
difun1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem difun1
StepHypRef Expression
1 inass 3823 . . . 4 ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))
2 invdif 3868 . . . 4 ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶)
31, 2eqtr3i 2646 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶)
4 undm 3885 . . . . 5 (V ∖ (𝐵𝐶)) = ((V ∖ 𝐵) ∩ (V ∖ 𝐶))
54ineq2i 3811 . . . 4 (𝐴 ∩ (V ∖ (𝐵𝐶))) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))
6 invdif 3868 . . . 4 (𝐴 ∩ (V ∖ (𝐵𝐶))) = (𝐴 ∖ (𝐵𝐶))
75, 6eqtr3i 2646 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (𝐵𝐶))
83, 7eqtr3i 2646 . 2 ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = (𝐴 ∖ (𝐵𝐶))
9 invdif 3868 . . 3 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
109difeq1i 3724 . 2 ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = ((𝐴𝐵) ∖ 𝐶)
118, 10eqtr3i 2646 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  Vcvv 3200  cdif 3571  cun 3572  cin 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581
This theorem is referenced by:  dif32  3891  difabs  3892  difpr  4334  infdiffi  8555  mreexexlem4d  16307  nulmbl2  23304  unmbl  23305  caragenuncllem  40726
  Copyright terms: Public domain W3C validator