Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuncllem Structured version   Visualization version   GIF version

Theorem caragenuncllem 40726
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuncllem.o (𝜑𝑂 ∈ OutMeas)
caragenuncllem.s 𝑆 = (CaraGen‘𝑂)
caragenuncllem.e (𝜑𝐸𝑆)
caragenuncllem.f (𝜑𝐹𝑆)
caragenuncllem.x 𝑋 = dom 𝑂
caragenuncllem.a (𝜑𝐴𝑋)
Assertion
Ref Expression
caragenuncllem (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))

Proof of Theorem caragenuncllem
StepHypRef Expression
1 caragenuncllem.o . . . . . 6 (𝜑𝑂 ∈ OutMeas)
2 caragenuncllem.s . . . . . 6 𝑆 = (CaraGen‘𝑂)
3 caragenuncllem.x . . . . . 6 𝑋 = dom 𝑂
4 caragenuncllem.e . . . . . 6 (𝜑𝐸𝑆)
5 caragenuncllem.a . . . . . . 7 (𝜑𝐴𝑋)
65ssinss1d 39214 . . . . . 6 (𝜑 → (𝐴 ∩ (𝐸𝐹)) ⊆ 𝑋)
71, 2, 3, 4, 6caragensplit 40714 . . . . 5 (𝜑 → ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = (𝑂‘(𝐴 ∩ (𝐸𝐹))))
87eqcomd 2628 . . . 4 (𝜑 → (𝑂‘(𝐴 ∩ (𝐸𝐹))) = ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))))
9 inass 3823 . . . . . . . 8 ((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸) = (𝐴 ∩ ((𝐸𝐹) ∩ 𝐸))
10 incom 3805 . . . . . . . . . 10 ((𝐸𝐹) ∩ 𝐸) = (𝐸 ∩ (𝐸𝐹))
11 inabs 3855 . . . . . . . . . 10 (𝐸 ∩ (𝐸𝐹)) = 𝐸
1210, 11eqtri 2644 . . . . . . . . 9 ((𝐸𝐹) ∩ 𝐸) = 𝐸
1312ineq2i 3811 . . . . . . . 8 (𝐴 ∩ ((𝐸𝐹) ∩ 𝐸)) = (𝐴𝐸)
149, 13eqtri 2644 . . . . . . 7 ((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸) = (𝐴𝐸)
1514fveq2i 6194 . . . . . 6 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) = (𝑂‘(𝐴𝐸))
16 incom 3805 . . . . . . . . . 10 ((𝐴𝐸) ∩ 𝐹) = (𝐹 ∩ (𝐴𝐸))
17 indifcom 3872 . . . . . . . . . 10 (𝐹 ∩ (𝐴𝐸)) = (𝐴 ∩ (𝐹𝐸))
1816, 17eqtr2i 2645 . . . . . . . . 9 (𝐴 ∩ (𝐹𝐸)) = ((𝐴𝐸) ∩ 𝐹)
1918eqcomi 2631 . . . . . . . 8 ((𝐴𝐸) ∩ 𝐹) = (𝐴 ∩ (𝐹𝐸))
20 difundir 3880 . . . . . . . . . 10 ((𝐸𝐹) ∖ 𝐸) = ((𝐸𝐸) ∪ (𝐹𝐸))
21 difid 3948 . . . . . . . . . . 11 (𝐸𝐸) = ∅
2221uneq1i 3763 . . . . . . . . . 10 ((𝐸𝐸) ∪ (𝐹𝐸)) = (∅ ∪ (𝐹𝐸))
23 0un 39215 . . . . . . . . . 10 (∅ ∪ (𝐹𝐸)) = (𝐹𝐸)
2420, 22, 233eqtrri 2649 . . . . . . . . 9 (𝐹𝐸) = ((𝐸𝐹) ∖ 𝐸)
2524ineq2i 3811 . . . . . . . 8 (𝐴 ∩ (𝐹𝐸)) = (𝐴 ∩ ((𝐸𝐹) ∖ 𝐸))
26 indif2 3870 . . . . . . . 8 (𝐴 ∩ ((𝐸𝐹) ∖ 𝐸)) = ((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸)
2719, 25, 263eqtrri 2649 . . . . . . 7 ((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸) = ((𝐴𝐸) ∩ 𝐹)
2827fveq2i 6194 . . . . . 6 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸)) = (𝑂‘((𝐴𝐸) ∩ 𝐹))
2915, 28oveq12i 6662 . . . . 5 ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹)))
3029a1i 11 . . . 4 (𝜑 → ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
31 eqidd 2623 . . . 4 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
328, 30, 313eqtrd 2660 . . 3 (𝜑 → (𝑂‘(𝐴 ∩ (𝐸𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
33 difun1 3887 . . . . 5 (𝐴 ∖ (𝐸𝐹)) = ((𝐴𝐸) ∖ 𝐹)
3433fveq2i 6194 . . . 4 (𝑂‘(𝐴 ∖ (𝐸𝐹))) = (𝑂‘((𝐴𝐸) ∖ 𝐹))
3534a1i 11 . . 3 (𝜑 → (𝑂‘(𝐴 ∖ (𝐸𝐹))) = (𝑂‘((𝐴𝐸) ∖ 𝐹)))
3632, 35oveq12d 6668 . 2 (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))))
375ssinss1d 39214 . . . . 5 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
381, 3, 37omexrcl 40721 . . . 4 (𝜑 → (𝑂‘(𝐴𝐸)) ∈ ℝ*)
391, 3, 37omecl 40717 . . . . 5 (𝜑 → (𝑂‘(𝐴𝐸)) ∈ (0[,]+∞))
4039xrge0nemnfd 39548 . . . 4 (𝜑 → (𝑂‘(𝐴𝐸)) ≠ -∞)
4138, 40jca 554 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) ∈ ℝ* ∧ (𝑂‘(𝐴𝐸)) ≠ -∞))
42 caragenuncllem.f . . . . . . 7 (𝜑𝐹𝑆)
431, 2, 42, 3caragenelss 40715 . . . . . 6 (𝜑𝐹𝑋)
4443ssinss2d 39228 . . . . 5 (𝜑 → ((𝐴𝐸) ∩ 𝐹) ⊆ 𝑋)
451, 3, 44omexrcl 40721 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ*)
461, 3, 44omecl 40717 . . . . 5 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ (0[,]+∞))
4746xrge0nemnfd 39548 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞)
4845, 47jca 554 . . 3 (𝜑 → ((𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞))
495ssdifssd 3748 . . . . . 6 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
5049ssdifssd 3748 . . . . 5 (𝜑 → ((𝐴𝐸) ∖ 𝐹) ⊆ 𝑋)
511, 3, 50omexrcl 40721 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ*)
521, 3, 50omecl 40717 . . . . 5 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ (0[,]+∞))
5352xrge0nemnfd 39548 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞)
5451, 53jca 554 . . 3 (𝜑 → ((𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞))
55 xaddass 12079 . . 3 ((((𝑂‘(𝐴𝐸)) ∈ ℝ* ∧ (𝑂‘(𝐴𝐸)) ≠ -∞) ∧ ((𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞) ∧ ((𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞)) → (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))))
5641, 48, 54, 55syl3anc 1326 . 2 (𝜑 → (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))))
571, 2, 3, 42, 49caragensplit 40714 . . . 4 (𝜑 → ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = (𝑂‘(𝐴𝐸)))
5857oveq2d 6666 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
591, 2, 3, 4, 5caragensplit 40714 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
6058, 59eqtrd 2656 . 2 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))) = (𝑂𝐴))
6136, 56, 603eqtrd 2660 1 (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915   cuni 4436  dom cdm 5114  cfv 5888  (class class class)co 6650  -∞cmnf 10072  *cxr 10073   +𝑒 cxad 11944  OutMeascome 40703  CaraGenccaragen 40705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-addass 10001  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-xadd 11947  df-icc 12182  df-ome 40704  df-caragen 40706
This theorem is referenced by:  caragenuncl  40727
  Copyright terms: Public domain W3C validator