| Step | Hyp | Ref
| Expression |
| 1 | | mreexexlem2d.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| 2 | 1 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → 𝐴 ∈ (Moore‘𝑋)) |
| 3 | | mreexexlem2d.2 |
. . 3
⊢ 𝑁 = (mrCls‘𝐴) |
| 4 | | mreexexlem2d.3 |
. . 3
⊢ 𝐼 = (mrInd‘𝐴) |
| 5 | | mreexexlem2d.4 |
. . . 4
⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 6 | 5 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 7 | | mreexexlem2d.5 |
. . . 4
⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
| 8 | 7 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
| 9 | | mreexexlem2d.6 |
. . . 4
⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 10 | 9 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 11 | | mreexexlem2d.7 |
. . . 4
⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
| 12 | 11 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
| 13 | | mreexexlem2d.8 |
. . . 4
⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) |
| 14 | 13 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → (𝐹 ∪ 𝐻) ∈ 𝐼) |
| 15 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 = ∅) → 𝐹 = ∅) |
| 16 | 15 | orcd 407 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → (𝐹 = ∅ ∨ 𝐺 = ∅)) |
| 17 | 2, 3, 4, 6, 8, 10,
12, 14, 16 | mreexexlem3d 16306 |
. 2
⊢ ((𝜑 ∧ 𝐹 = ∅) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 18 | | n0 3931 |
. . . . 5
⊢ (𝐹 ≠ ∅ ↔
∃𝑟 𝑟 ∈ 𝐹) |
| 19 | 18 | biimpi 206 |
. . . 4
⊢ (𝐹 ≠ ∅ →
∃𝑟 𝑟 ∈ 𝐹) |
| 20 | 19 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → ∃𝑟 𝑟 ∈ 𝐹) |
| 21 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → 𝐴 ∈ (Moore‘𝑋)) |
| 22 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 23 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
| 24 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 25 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
| 26 | 13 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → (𝐹 ∪ 𝐻) ∈ 𝐼) |
| 27 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → 𝑟 ∈ 𝐹) |
| 28 | 21, 3, 4, 22, 23, 24, 25, 26, 27 | mreexexlem2d 16305 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → ∃𝑞 ∈ 𝐺 (¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) |
| 29 | | 3anass 1042 |
. . . . . 6
⊢ ((𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼) ↔ (𝑞 ∈ 𝐺 ∧ (¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) |
| 30 | 1 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋)) |
| 31 | 30 | elfvexd 6222 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝑋 ∈ V) |
| 32 | | simpr2 1068 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ¬ 𝑞 ∈ (𝐹 ∖ {𝑟})) |
| 33 | | difsnb 4337 |
. . . . . . . . . . 11
⊢ (¬
𝑞 ∈ (𝐹 ∖ {𝑟}) ↔ ((𝐹 ∖ {𝑟}) ∖ {𝑞}) = (𝐹 ∖ {𝑟})) |
| 34 | 32, 33 | sylib 208 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ∖ {𝑞}) = (𝐹 ∖ {𝑟})) |
| 35 | 7 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
| 36 | 35 | ssdifssd 3748 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ (𝑋 ∖ 𝐻)) |
| 37 | 36 | ssdifd 3746 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ∖ {𝑞}) ⊆ ((𝑋 ∖ 𝐻) ∖ {𝑞})) |
| 38 | 34, 37 | eqsstr3d 3640 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ ((𝑋 ∖ 𝐻) ∖ {𝑞})) |
| 39 | | difun1 3887 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐻 ∪ {𝑞})) = ((𝑋 ∖ 𝐻) ∖ {𝑞}) |
| 40 | 38, 39 | syl6sseqr 3652 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ (𝑋 ∖ (𝐻 ∪ {𝑞}))) |
| 41 | 9 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 42 | 41 | ssdifd 3746 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐺 ∖ {𝑞}) ⊆ ((𝑋 ∖ 𝐻) ∖ {𝑞})) |
| 43 | 42, 39 | syl6sseqr 3652 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐺 ∖ {𝑞}) ⊆ (𝑋 ∖ (𝐻 ∪ {𝑞}))) |
| 44 | 11 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
| 45 | | simpr1 1067 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝑞 ∈ 𝐺) |
| 46 | | uncom 3757 |
. . . . . . . . . . . . . 14
⊢ (𝐻 ∪ {𝑞}) = ({𝑞} ∪ 𝐻) |
| 47 | 46 | uneq2i 3764 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})) = ((𝐺 ∖ {𝑞}) ∪ ({𝑞} ∪ 𝐻)) |
| 48 | | unass 3770 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∖ {𝑞}) ∪ {𝑞}) ∪ 𝐻) = ((𝐺 ∖ {𝑞}) ∪ ({𝑞} ∪ 𝐻)) |
| 49 | | difsnid 4341 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ 𝐺 → ((𝐺 ∖ {𝑞}) ∪ {𝑞}) = 𝐺) |
| 50 | 49 | uneq1d 3766 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ 𝐺 → (((𝐺 ∖ {𝑞}) ∪ {𝑞}) ∪ 𝐻) = (𝐺 ∪ 𝐻)) |
| 51 | 48, 50 | syl5eqr 2670 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ 𝐺 → ((𝐺 ∖ {𝑞}) ∪ ({𝑞} ∪ 𝐻)) = (𝐺 ∪ 𝐻)) |
| 52 | 47, 51 | syl5eq 2668 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ 𝐺 → ((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})) = (𝐺 ∪ 𝐻)) |
| 53 | 45, 52 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})) = (𝐺 ∪ 𝐻)) |
| 54 | 53 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝑁‘((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞}))) = (𝑁‘(𝐺 ∪ 𝐻))) |
| 55 | 44, 54 | sseqtr4d 3642 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐹 ⊆ (𝑁‘((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})))) |
| 56 | 55 | ssdifssd 3748 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ (𝑁‘((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})))) |
| 57 | | simpr3 1069 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼) |
| 58 | | mreexexlem4d.B |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿)) |
| 59 | 58 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿)) |
| 60 | | mreexexlem4d.9 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ ω) |
| 61 | 60 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐿 ∈ ω) |
| 62 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝑟 ∈ 𝐹) |
| 63 | | 3anan12 1051 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ω ∧ 𝐹 ≈ suc 𝐿 ∧ 𝑟 ∈ 𝐹) ↔ (𝐹 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹))) |
| 64 | | dif1en 8193 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ω ∧ 𝐹 ≈ suc 𝐿 ∧ 𝑟 ∈ 𝐹) → (𝐹 ∖ {𝑟}) ≈ 𝐿) |
| 65 | 63, 64 | sylbir 225 |
. . . . . . . . . . . 12
⊢ ((𝐹 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹)) → (𝐹 ∖ {𝑟}) ≈ 𝐿) |
| 66 | 65 | expcom 451 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹) → (𝐹 ≈ suc 𝐿 → (𝐹 ∖ {𝑟}) ≈ 𝐿)) |
| 67 | 61, 62, 66 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ≈ suc 𝐿 → (𝐹 ∖ {𝑟}) ≈ 𝐿)) |
| 68 | | 3anan12 1051 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ω ∧ 𝐺 ≈ suc 𝐿 ∧ 𝑞 ∈ 𝐺) ↔ (𝐺 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺))) |
| 69 | | dif1en 8193 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ω ∧ 𝐺 ≈ suc 𝐿 ∧ 𝑞 ∈ 𝐺) → (𝐺 ∖ {𝑞}) ≈ 𝐿) |
| 70 | 68, 69 | sylbir 225 |
. . . . . . . . . . . 12
⊢ ((𝐺 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺)) → (𝐺 ∖ {𝑞}) ≈ 𝐿) |
| 71 | 70 | expcom 451 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺) → (𝐺 ≈ suc 𝐿 → (𝐺 ∖ {𝑞}) ≈ 𝐿)) |
| 72 | 61, 45, 71 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐺 ≈ suc 𝐿 → (𝐺 ∖ {𝑞}) ≈ 𝐿)) |
| 73 | 67, 72 | orim12d 883 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿) → ((𝐹 ∖ {𝑟}) ≈ 𝐿 ∨ (𝐺 ∖ {𝑞}) ≈ 𝐿))) |
| 74 | 59, 73 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ≈ 𝐿 ∨ (𝐺 ∖ {𝑞}) ≈ 𝐿)) |
| 75 | | mreexexlem4d.A |
. . . . . . . . 9
⊢ (𝜑 → ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
| 76 | 75 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
| 77 | 31, 40, 43, 56, 57, 74, 76 | mreexexlemd 16304 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞})((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) |
| 78 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞})) |
| 79 | 78 | elpwid 4170 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑖 ⊆ (𝐺 ∖ {𝑞})) |
| 80 | 79 | difss2d 3740 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑖 ⊆ 𝐺) |
| 81 | | simplr1 1103 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑞 ∈ 𝐺) |
| 82 | 81 | snssd 4340 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → {𝑞} ⊆ 𝐺) |
| 83 | 80, 82 | unssd 3789 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∪ {𝑞}) ⊆ 𝐺) |
| 84 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑋 ∈ V) |
| 85 | 9 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 86 | 85 | difss2d 3740 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐺 ⊆ 𝑋) |
| 87 | 84, 86 | ssexd 4805 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐺 ∈ V) |
| 88 | | elpw2g 4827 |
. . . . . . . . . 10
⊢ (𝐺 ∈ V → ((𝑖 ∪ {𝑞}) ∈ 𝒫 𝐺 ↔ (𝑖 ∪ {𝑞}) ⊆ 𝐺)) |
| 89 | 87, 88 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝑖 ∪ {𝑞}) ∈ 𝒫 𝐺 ↔ (𝑖 ∪ {𝑞}) ⊆ 𝐺)) |
| 90 | 83, 89 | mpbird 247 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∪ {𝑞}) ∈ 𝒫 𝐺) |
| 91 | | difsnid 4341 |
. . . . . . . . . 10
⊢ (𝑟 ∈ 𝐹 → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) = 𝐹) |
| 92 | 91 | ad3antlr 767 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) = 𝐹) |
| 93 | | simprrl 804 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝐹 ∖ {𝑟}) ≈ 𝑖) |
| 94 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑟 ∈ V |
| 95 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑞 ∈ V |
| 96 | | en2sn 8037 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ V ∧ 𝑞 ∈ V) → {𝑟} ≈ {𝑞}) |
| 97 | 94, 95, 96 | mp2an 708 |
. . . . . . . . . . 11
⊢ {𝑟} ≈ {𝑞} |
| 98 | 97 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → {𝑟} ≈ {𝑞}) |
| 99 | | incom 3805 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∖ {𝑟}) ∩ {𝑟}) = ({𝑟} ∩ (𝐹 ∖ {𝑟})) |
| 100 | | disjdif 4040 |
. . . . . . . . . . . 12
⊢ ({𝑟} ∩ (𝐹 ∖ {𝑟})) = ∅ |
| 101 | 99, 100 | eqtri 2644 |
. . . . . . . . . . 11
⊢ ((𝐹 ∖ {𝑟}) ∩ {𝑟}) = ∅ |
| 102 | 101 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝐹 ∖ {𝑟}) ∩ {𝑟}) = ∅) |
| 103 | | ssdifin0 4050 |
. . . . . . . . . . 11
⊢ (𝑖 ⊆ (𝐺 ∖ {𝑞}) → (𝑖 ∩ {𝑞}) = ∅) |
| 104 | 79, 103 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∩ {𝑞}) = ∅) |
| 105 | | unen 8040 |
. . . . . . . . . 10
⊢ ((((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ {𝑟} ≈ {𝑞}) ∧ (((𝐹 ∖ {𝑟}) ∩ {𝑟}) = ∅ ∧ (𝑖 ∩ {𝑞}) = ∅)) → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) ≈ (𝑖 ∪ {𝑞})) |
| 106 | 93, 98, 102, 104, 105 | syl22anc 1327 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) ≈ (𝑖 ∪ {𝑞})) |
| 107 | 92, 106 | eqbrtrrd 4677 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐹 ≈ (𝑖 ∪ {𝑞})) |
| 108 | | unass 3770 |
. . . . . . . . . 10
⊢ ((𝑖 ∪ {𝑞}) ∪ 𝐻) = (𝑖 ∪ ({𝑞} ∪ 𝐻)) |
| 109 | | uncom 3757 |
. . . . . . . . . . 11
⊢ ({𝑞} ∪ 𝐻) = (𝐻 ∪ {𝑞}) |
| 110 | 109 | uneq2i 3764 |
. . . . . . . . . 10
⊢ (𝑖 ∪ ({𝑞} ∪ 𝐻)) = (𝑖 ∪ (𝐻 ∪ {𝑞})) |
| 111 | 108, 110 | eqtr2i 2645 |
. . . . . . . . 9
⊢ (𝑖 ∪ (𝐻 ∪ {𝑞})) = ((𝑖 ∪ {𝑞}) ∪ 𝐻) |
| 112 | | simprrr 805 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼) |
| 113 | 111, 112 | syl5eqelr 2706 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼) |
| 114 | | breq2 4657 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑖 ∪ {𝑞}) → (𝐹 ≈ 𝑗 ↔ 𝐹 ≈ (𝑖 ∪ {𝑞}))) |
| 115 | | uneq1 3760 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑖 ∪ {𝑞}) → (𝑗 ∪ 𝐻) = ((𝑖 ∪ {𝑞}) ∪ 𝐻)) |
| 116 | 115 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑖 ∪ {𝑞}) → ((𝑗 ∪ 𝐻) ∈ 𝐼 ↔ ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼)) |
| 117 | 114, 116 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑗 = (𝑖 ∪ {𝑞}) → ((𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼) ↔ (𝐹 ≈ (𝑖 ∪ {𝑞}) ∧ ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼))) |
| 118 | 117 | rspcev 3309 |
. . . . . . . 8
⊢ (((𝑖 ∪ {𝑞}) ∈ 𝒫 𝐺 ∧ (𝐹 ≈ (𝑖 ∪ {𝑞}) ∧ ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼)) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 119 | 90, 107, 113, 118 | syl12anc 1324 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 120 | 77, 119 | rexlimddv 3035 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 121 | 29, 120 | sylan2br 493 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ (¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 122 | 28, 121 | rexlimddv 3035 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 123 | 122 | adantlr 751 |
. . 3
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ 𝑟 ∈ 𝐹) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 124 | 20, 123 | exlimddv 1863 |
. 2
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 125 | 17, 124 | pm2.61dane 2881 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |