MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxiunOLD Structured version   Visualization version   GIF version

Theorem disjxiunOLD 4650
Description: Obsolete proof of disjxiun 4649 as of 27-May-2021. An indexed union of a disjoint collection of disjoint collections is disjoint if each component is disjoint, and the disjoint unions in the collection are also disjoint. Note that 𝐵(𝑦) and 𝐶(𝑥) may have the displayed free variables. (Contributed by Mario Carneiro, 14-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
disjxiunOLD (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem disjxiunOLD
Dummy variables 𝑠 𝑟 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfiu1 4550 . . . . . 6 𝑦 𝑦𝐴 𝐵
2 nfcv 2764 . . . . . 6 𝑦𝐶
31, 2nfdisj 4632 . . . . 5 𝑦Disj 𝑥 𝑦𝐴 𝐵𝐶
4 ssiun2 4563 . . . . . . 7 (𝑦𝐴𝐵 𝑦𝐴 𝐵)
5 disjss1 4626 . . . . . . 7 (𝐵 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶Disj 𝑥𝐵 𝐶))
64, 5syl 17 . . . . . 6 (𝑦𝐴 → (Disj 𝑥 𝑦𝐴 𝐵𝐶Disj 𝑥𝐵 𝐶))
76com12 32 . . . . 5 (Disj 𝑥 𝑦𝐴 𝐵𝐶 → (𝑦𝐴Disj 𝑥𝐵 𝐶))
83, 7ralrimi 2957 . . . 4 (Disj 𝑥 𝑦𝐴 𝐵𝐶 → ∀𝑦𝐴 Disj 𝑥𝐵 𝐶)
98a1i 11 . . 3 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 → ∀𝑦𝐴 Disj 𝑥𝐵 𝐶))
10 simplr 792 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → Disj 𝑥 𝑦𝐴 𝐵𝐶)
11 simprll 802 . . . . . . . . . . 11 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → 𝑢𝐴)
12 ssiun2 4563 . . . . . . . . . . . 12 (𝑢𝐴𝑢 / 𝑦𝐵 𝑢𝐴 𝑢 / 𝑦𝐵)
13 nfcv 2764 . . . . . . . . . . . . 13 𝑢𝐵
14 nfcsb1v 3549 . . . . . . . . . . . . 13 𝑦𝑢 / 𝑦𝐵
15 csbeq1a 3542 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝐵 = 𝑢 / 𝑦𝐵)
1613, 14, 15cbviun 4557 . . . . . . . . . . . 12 𝑦𝐴 𝐵 = 𝑢𝐴 𝑢 / 𝑦𝐵
1712, 16syl6sseqr 3652 . . . . . . . . . . 11 (𝑢𝐴𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
1811, 17syl 17 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → 𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
19 simprlr 803 . . . . . . . . . . 11 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → 𝑣𝐴)
20 csbeq1 3536 . . . . . . . . . . . . 13 (𝑢 = 𝑣𝑢 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
2120sseq1d 3632 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑢 / 𝑦𝐵 𝑦𝐴 𝐵𝑣 / 𝑦𝐵 𝑦𝐴 𝐵))
2221, 17vtoclga 3272 . . . . . . . . . . 11 (𝑣𝐴𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
2319, 22syl 17 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → 𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
24 simpl 473 . . . . . . . . . . . . . . . 16 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → Disj 𝑦𝐴 𝐵)
2513, 14, 15cbvdisj 4630 . . . . . . . . . . . . . . . 16 (Disj 𝑦𝐴 𝐵Disj 𝑢𝐴 𝑢 / 𝑦𝐵)
2624, 25sylib 208 . . . . . . . . . . . . . . 15 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → Disj 𝑢𝐴 𝑢 / 𝑦𝐵)
2720disjor 4634 . . . . . . . . . . . . . . 15 (Disj 𝑢𝐴 𝑢 / 𝑦𝐵 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
2826, 27sylib 208 . . . . . . . . . . . . . 14 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
29 rsp2 2936 . . . . . . . . . . . . . 14 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅) → ((𝑢𝐴𝑣𝐴) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)))
3028, 29syl 17 . . . . . . . . . . . . 13 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → ((𝑢𝐴𝑣𝐴) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)))
3130imp 445 . . . . . . . . . . . 12 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
3231ord 392 . . . . . . . . . . 11 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑢 = 𝑣 → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
3332impr 649 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)
34 disjiun 4640 . . . . . . . . . 10 ((Disj 𝑥 𝑦𝐴 𝐵𝐶 ∧ (𝑢 / 𝑦𝐵 𝑦𝐴 𝐵𝑣 / 𝑦𝐵 𝑦𝐴 𝐵 ∧ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
3510, 18, 23, 33, 34syl13anc 1328 . . . . . . . . 9 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
3635expr 643 . . . . . . . 8 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑢 = 𝑣 → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3736orrd 393 . . . . . . 7 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3837ralrimivva 2971 . . . . . 6 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3920iuneq1d 4545 . . . . . . 7 (𝑢 = 𝑣 𝑥 𝑢 / 𝑦𝐵𝐶 = 𝑥 𝑣 / 𝑦𝐵𝐶)
4039disjor 4634 . . . . . 6 (Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
4138, 40sylibr 224 . . . . 5 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶)
42 nfcv 2764 . . . . . 6 𝑢 𝑥𝐵 𝐶
4314, 2nfiun 4548 . . . . . 6 𝑦 𝑥 𝑢 / 𝑦𝐵𝐶
4415iuneq1d 4545 . . . . . 6 (𝑦 = 𝑢 𝑥𝐵 𝐶 = 𝑥 𝑢 / 𝑦𝐵𝐶)
4542, 43, 44cbvdisj 4630 . . . . 5 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶)
4641, 45sylibr 224 . . . 4 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → Disj 𝑦𝐴 𝑥𝐵 𝐶)
4746ex 450 . . 3 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶))
489, 47jcad 555 . 2 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 → (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
4916eleq2i 2693 . . . . . . . . 9 (𝑟 𝑦𝐴 𝐵𝑟 𝑢𝐴 𝑢 / 𝑦𝐵)
50 eliun 4524 . . . . . . . . 9 (𝑟 𝑢𝐴 𝑢 / 𝑦𝐵 ↔ ∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵)
5149, 50bitri 264 . . . . . . . 8 (𝑟 𝑦𝐴 𝐵 ↔ ∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵)
52 nfcv 2764 . . . . . . . . . . 11 𝑣𝐵
53 nfcsb1v 3549 . . . . . . . . . . 11 𝑦𝑣 / 𝑦𝐵
54 csbeq1a 3542 . . . . . . . . . . 11 (𝑦 = 𝑣𝐵 = 𝑣 / 𝑦𝐵)
5552, 53, 54cbviun 4557 . . . . . . . . . 10 𝑦𝐴 𝐵 = 𝑣𝐴 𝑣 / 𝑦𝐵
5655eleq2i 2693 . . . . . . . . 9 (𝑠 𝑦𝐴 𝐵𝑠 𝑣𝐴 𝑣 / 𝑦𝐵)
57 eliun 4524 . . . . . . . . 9 (𝑠 𝑣𝐴 𝑣 / 𝑦𝐵 ↔ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵)
5856, 57bitri 264 . . . . . . . 8 (𝑠 𝑦𝐴 𝐵 ↔ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵)
5951, 58anbi12i 733 . . . . . . 7 ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) ↔ (∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵 ∧ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵))
60 reeanv 3107 . . . . . . 7 (∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ↔ (∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵 ∧ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵))
6159, 60bitr4i 267 . . . . . 6 ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) ↔ ∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵))
62 simplrr 801 . . . . . . . . . . . 12 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → ¬ 𝑟 = 𝑠)
63 simprl 794 . . . . . . . . . . . . . . . . 17 (((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) → 𝑢𝐴)
64 simplrl 800 . . . . . . . . . . . . . . . . 17 (((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) → ∀𝑦𝐴 Disj 𝑥𝐵 𝐶)
6514, 2nfdisj 4632 . . . . . . . . . . . . . . . . . 18 𝑦Disj 𝑥 𝑢 / 𝑦𝐵𝐶
6615disjeq1d 4628 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (Disj 𝑥𝐵 𝐶Disj 𝑥 𝑢 / 𝑦𝐵𝐶))
6765, 66rspc 3303 . . . . . . . . . . . . . . . . 17 (𝑢𝐴 → (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑥 𝑢 / 𝑦𝐵𝐶))
6863, 64, 67sylc 65 . . . . . . . . . . . . . . . 16 (((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) → Disj 𝑥 𝑢 / 𝑦𝐵𝐶)
6968ad2antrr 762 . . . . . . . . . . . . . . 15 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → Disj 𝑥 𝑢 / 𝑦𝐵𝐶)
70 disjors 4635 . . . . . . . . . . . . . . 15 (Disj 𝑥 𝑢 / 𝑦𝐵𝐶 ↔ ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7169, 70sylib 208 . . . . . . . . . . . . . 14 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
72 simplrl 800 . . . . . . . . . . . . . . . 16 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵))
7372simpld 475 . . . . . . . . . . . . . . 15 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → 𝑟𝑢 / 𝑦𝐵)
7472simprd 479 . . . . . . . . . . . . . . . 16 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → 𝑠𝑣 / 𝑦𝐵)
7520adantl 482 . . . . . . . . . . . . . . . 16 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → 𝑢 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
7674, 75eleqtrrd 2704 . . . . . . . . . . . . . . 15 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → 𝑠𝑢 / 𝑦𝐵)
7773, 76jca 554 . . . . . . . . . . . . . 14 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵))
78 rsp2 2936 . . . . . . . . . . . . . 14 (∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅) → ((𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
7971, 77, 78sylc 65 . . . . . . . . . . . . 13 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
8079ord 392 . . . . . . . . . . . 12 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (¬ 𝑟 = 𝑠 → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
8162, 80mpd 15 . . . . . . . . . . 11 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
82 simplrl 800 . . . . . . . . . . . . . . 15 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵))
8382simpld 475 . . . . . . . . . . . . . 14 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → 𝑟𝑢 / 𝑦𝐵)
84 ssiun2 4563 . . . . . . . . . . . . . . 15 (𝑟𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶 𝑟 𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶)
85 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑟𝐶
86 nfcsb1v 3549 . . . . . . . . . . . . . . . 16 𝑥𝑟 / 𝑥𝐶
87 csbeq1a 3542 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑟𝐶 = 𝑟 / 𝑥𝐶)
8885, 86, 87cbviun 4557 . . . . . . . . . . . . . . 15 𝑥 𝑢 / 𝑦𝐵𝐶 = 𝑟 𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶
8984, 88syl6sseqr 3652 . . . . . . . . . . . . . 14 (𝑟𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶 𝑥 𝑢 / 𝑦𝐵𝐶)
9083, 89syl 17 . . . . . . . . . . . . 13 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → 𝑟 / 𝑥𝐶 𝑥 𝑢 / 𝑦𝐵𝐶)
9182simprd 479 . . . . . . . . . . . . . 14 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → 𝑠𝑣 / 𝑦𝐵)
92 ssiun2 4563 . . . . . . . . . . . . . . 15 (𝑠𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶 𝑠 𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶)
93 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑠𝐶
94 nfcsb1v 3549 . . . . . . . . . . . . . . . 16 𝑥𝑠 / 𝑥𝐶
95 csbeq1a 3542 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑠𝐶 = 𝑠 / 𝑥𝐶)
9693, 94, 95cbviun 4557 . . . . . . . . . . . . . . 15 𝑥 𝑣 / 𝑦𝐵𝐶 = 𝑠 𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶
9792, 96syl6sseqr 3652 . . . . . . . . . . . . . 14 (𝑠𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶 𝑥 𝑣 / 𝑦𝐵𝐶)
9891, 97syl 17 . . . . . . . . . . . . 13 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → 𝑠 / 𝑥𝐶 𝑥 𝑣 / 𝑦𝐵𝐶)
99 ss2in 3840 . . . . . . . . . . . . 13 ((𝑟 / 𝑥𝐶 𝑥 𝑢 / 𝑦𝐵𝐶𝑠 / 𝑥𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
10090, 98, 99syl2anc 693 . . . . . . . . . . . 12 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
101 simplrr 801 . . . . . . . . . . . . . . 15 (((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) → Disj 𝑦𝐴 𝑥𝐵 𝐶)
102101ad2antrr 762 . . . . . . . . . . . . . 14 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → Disj 𝑦𝐴 𝑥𝐵 𝐶)
103 nfcv 2764 . . . . . . . . . . . . . . 15 𝑧 𝑥𝐵 𝐶
104 nfcsb1v 3549 . . . . . . . . . . . . . . . 16 𝑦𝑧 / 𝑦𝐵
105104, 2nfiun 4548 . . . . . . . . . . . . . . 15 𝑦 𝑥 𝑧 / 𝑦𝐵𝐶
106 csbeq1a 3542 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧𝐵 = 𝑧 / 𝑦𝐵)
107106iuneq1d 4545 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 𝑥𝐵 𝐶 = 𝑥 𝑧 / 𝑦𝐵𝐶)
108103, 105, 107cbvdisj 4630 . . . . . . . . . . . . . 14 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
109102, 108sylib 208 . . . . . . . . . . . . 13 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
11063ad2antrr 762 . . . . . . . . . . . . 13 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → 𝑢𝐴)
111 simprr 796 . . . . . . . . . . . . . 14 (((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) → 𝑣𝐴)
112111ad2antrr 762 . . . . . . . . . . . . 13 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → 𝑣𝐴)
113 simpr 477 . . . . . . . . . . . . 13 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → 𝑢𝑣)
114 csbeq1 3536 . . . . . . . . . . . . . . 15 (𝑧 = 𝑢𝑧 / 𝑦𝐵 = 𝑢 / 𝑦𝐵)
115114iuneq1d 4545 . . . . . . . . . . . . . 14 (𝑧 = 𝑢 𝑥 𝑧 / 𝑦𝐵𝐶 = 𝑥 𝑢 / 𝑦𝐵𝐶)
116 csbeq1 3536 . . . . . . . . . . . . . . 15 (𝑧 = 𝑣𝑧 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
117116iuneq1d 4545 . . . . . . . . . . . . . 14 (𝑧 = 𝑣 𝑥 𝑧 / 𝑦𝐵𝐶 = 𝑥 𝑣 / 𝑦𝐵𝐶)
118115, 117disji2 4636 . . . . . . . . . . . . 13 ((Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶 ∧ (𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
119109, 110, 112, 113, 118syl121anc 1331 . . . . . . . . . . . 12 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
120 sseq0 3975 . . . . . . . . . . . 12 (((𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) ∧ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
121100, 119, 120syl2anc 693 . . . . . . . . . . 11 (((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
12281, 121pm2.61dane 2881 . . . . . . . . . 10 ((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
123122expr 643 . . . . . . . . 9 ((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → (¬ 𝑟 = 𝑠 → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
124123orrd 393 . . . . . . . 8 ((((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
125124ex 450 . . . . . . 7 (((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) ∧ (𝑢𝐴𝑣𝐴)) → ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
126125rexlimdvva 3038 . . . . . 6 ((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) → (∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
12761, 126syl5bi 232 . . . . 5 ((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) → ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
128127ralrimivv 2970 . . . 4 ((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) → ∀𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
129 disjors 4635 . . . 4 (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ ∀𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
130128, 129sylibr 224 . . 3 ((Disj 𝑦𝐴 𝐵 ∧ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)) → Disj 𝑥 𝑦𝐴 𝐵𝐶)
131130ex 450 . 2 (Disj 𝑦𝐴 𝐵 → ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → Disj 𝑥 𝑦𝐴 𝐵𝐶))
13248, 131impbid 202 1 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  csb 3533  cin 3573  wss 3574  c0 3915   ciun 4520  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iun 4522  df-disj 4621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator