MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjiun Structured version   Visualization version   GIF version

Theorem disjiun 4640
Description: A disjoint collection yields disjoint indexed unions for disjoint index sets. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjiun ((Disj 𝑥𝐴 𝐵 ∧ (𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅)) → ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-disj 4621 . . . 4 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
2 elin 3796 . . . . . . . . . 10 (𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) ↔ (𝑦 𝑥𝐶 𝐵𝑦 𝑥𝐷 𝐵))
3 eliun 4524 . . . . . . . . . . 11 (𝑦 𝑥𝐶 𝐵 ↔ ∃𝑥𝐶 𝑦𝐵)
4 eliun 4524 . . . . . . . . . . 11 (𝑦 𝑥𝐷 𝐵 ↔ ∃𝑥𝐷 𝑦𝐵)
53, 4anbi12i 733 . . . . . . . . . 10 ((𝑦 𝑥𝐶 𝐵𝑦 𝑥𝐷 𝐵) ↔ (∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵))
62, 5bitri 264 . . . . . . . . 9 (𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) ↔ (∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵))
7 nfv 1843 . . . . . . . . . . . 12 𝑧 𝑦𝐵
87rmo2 3526 . . . . . . . . . . 11 (∃*𝑥𝐴 𝑦𝐵 ↔ ∃𝑧𝑥𝐴 (𝑦𝐵𝑥 = 𝑧))
9 an4 865 . . . . . . . . . . . . 13 (((𝐶𝐴𝐷𝐴) ∧ (∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵)) ↔ ((𝐶𝐴 ∧ ∃𝑥𝐶 𝑦𝐵) ∧ (𝐷𝐴 ∧ ∃𝑥𝐷 𝑦𝐵)))
10 ssralv 3666 . . . . . . . . . . . . . . . . . . 19 (𝐶𝐴 → (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → ∀𝑥𝐶 (𝑦𝐵𝑥 = 𝑧)))
1110impcom 446 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) ∧ 𝐶𝐴) → ∀𝑥𝐶 (𝑦𝐵𝑥 = 𝑧))
12 r19.29 3072 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑥𝐶 (𝑦𝐵𝑥 = 𝑧) ∧ ∃𝑥𝐶 𝑦𝐵) → ∃𝑥𝐶 ((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵))
13 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐵𝑥 = 𝑧) → (𝑦𝐵𝑥 = 𝑧))
1413imp 445 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → 𝑥 = 𝑧)
1514eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → (𝑥𝐶𝑧𝐶))
1615biimpcd 239 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐶 → (((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → 𝑧𝐶))
1716rexlimiv 3027 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥𝐶 ((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → 𝑧𝐶)
1812, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((∀𝑥𝐶 (𝑦𝐵𝑥 = 𝑧) ∧ ∃𝑥𝐶 𝑦𝐵) → 𝑧𝐶)
1918ex 450 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐶 (𝑦𝐵𝑥 = 𝑧) → (∃𝑥𝐶 𝑦𝐵𝑧𝐶))
2011, 19syl 17 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) ∧ 𝐶𝐴) → (∃𝑥𝐶 𝑦𝐵𝑧𝐶))
2120expimpd 629 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → ((𝐶𝐴 ∧ ∃𝑥𝐶 𝑦𝐵) → 𝑧𝐶))
22 ssralv 3666 . . . . . . . . . . . . . . . . . . 19 (𝐷𝐴 → (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → ∀𝑥𝐷 (𝑦𝐵𝑥 = 𝑧)))
2322impcom 446 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) ∧ 𝐷𝐴) → ∀𝑥𝐷 (𝑦𝐵𝑥 = 𝑧))
24 r19.29 3072 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑥𝐷 (𝑦𝐵𝑥 = 𝑧) ∧ ∃𝑥𝐷 𝑦𝐵) → ∃𝑥𝐷 ((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵))
2514eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → (𝑥𝐷𝑧𝐷))
2625biimpcd 239 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 → (((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → 𝑧𝐷))
2726rexlimiv 3027 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥𝐷 ((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → 𝑧𝐷)
2824, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((∀𝑥𝐷 (𝑦𝐵𝑥 = 𝑧) ∧ ∃𝑥𝐷 𝑦𝐵) → 𝑧𝐷)
2928ex 450 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐷 (𝑦𝐵𝑥 = 𝑧) → (∃𝑥𝐷 𝑦𝐵𝑧𝐷))
3023, 29syl 17 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) ∧ 𝐷𝐴) → (∃𝑥𝐷 𝑦𝐵𝑧𝐷))
3130expimpd 629 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → ((𝐷𝐴 ∧ ∃𝑥𝐷 𝑦𝐵) → 𝑧𝐷))
3221, 31anim12d 586 . . . . . . . . . . . . . . 15 (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → (((𝐶𝐴 ∧ ∃𝑥𝐶 𝑦𝐵) ∧ (𝐷𝐴 ∧ ∃𝑥𝐷 𝑦𝐵)) → (𝑧𝐶𝑧𝐷)))
33 inelcm 4032 . . . . . . . . . . . . . . 15 ((𝑧𝐶𝑧𝐷) → (𝐶𝐷) ≠ ∅)
3432, 33syl6 35 . . . . . . . . . . . . . 14 (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → (((𝐶𝐴 ∧ ∃𝑥𝐶 𝑦𝐵) ∧ (𝐷𝐴 ∧ ∃𝑥𝐷 𝑦𝐵)) → (𝐶𝐷) ≠ ∅))
3534exlimiv 1858 . . . . . . . . . . . . 13 (∃𝑧𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → (((𝐶𝐴 ∧ ∃𝑥𝐶 𝑦𝐵) ∧ (𝐷𝐴 ∧ ∃𝑥𝐷 𝑦𝐵)) → (𝐶𝐷) ≠ ∅))
369, 35syl5bi 232 . . . . . . . . . . . 12 (∃𝑧𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → (((𝐶𝐴𝐷𝐴) ∧ (∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵)) → (𝐶𝐷) ≠ ∅))
3736expd 452 . . . . . . . . . . 11 (∃𝑧𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → ((𝐶𝐴𝐷𝐴) → ((∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵) → (𝐶𝐷) ≠ ∅)))
388, 37sylbi 207 . . . . . . . . . 10 (∃*𝑥𝐴 𝑦𝐵 → ((𝐶𝐴𝐷𝐴) → ((∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵) → (𝐶𝐷) ≠ ∅)))
3938impcom 446 . . . . . . . . 9 (((𝐶𝐴𝐷𝐴) ∧ ∃*𝑥𝐴 𝑦𝐵) → ((∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵) → (𝐶𝐷) ≠ ∅))
406, 39syl5bi 232 . . . . . . . 8 (((𝐶𝐴𝐷𝐴) ∧ ∃*𝑥𝐴 𝑦𝐵) → (𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) → (𝐶𝐷) ≠ ∅))
4140necon2bd 2810 . . . . . . 7 (((𝐶𝐴𝐷𝐴) ∧ ∃*𝑥𝐴 𝑦𝐵) → ((𝐶𝐷) = ∅ → ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵)))
4241impancom 456 . . . . . 6 (((𝐶𝐴𝐷𝐴) ∧ (𝐶𝐷) = ∅) → (∃*𝑥𝐴 𝑦𝐵 → ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵)))
43423impa 1259 . . . . 5 ((𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅) → (∃*𝑥𝐴 𝑦𝐵 → ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵)))
4443alimdv 1845 . . . 4 ((𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅) → (∀𝑦∃*𝑥𝐴 𝑦𝐵 → ∀𝑦 ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵)))
451, 44syl5bi 232 . . 3 ((𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅) → (Disj 𝑥𝐴 𝐵 → ∀𝑦 ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵)))
4645impcom 446 . 2 ((Disj 𝑥𝐴 𝐵 ∧ (𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅)) → ∀𝑦 ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵))
47 eq0 3929 . 2 (( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵))
4846, 47sylibr 224 1 ((Disj 𝑥𝐴 𝐵 ∧ (𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅)) → ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃*wrmo 2915  cin 3573  wss 3574  c0 3915   ciun 4520  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rmo 2920  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iun 4522  df-disj 4621
This theorem is referenced by:  disjxiun  4649  disjxiunOLD  4650  fsumiun  14553  uniioombllem4  23354  disjiun2  39226  sge0iunmptlemfi  40630
  Copyright terms: Public domain W3C validator