![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dissneq | Structured version Visualization version GIF version |
Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.) |
Ref | Expression |
---|---|
dissneq.c | ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Ref | Expression |
---|---|
dissneq | ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dissneq.c | . . 3 ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
2 | sneq 4187 | . . . . . 6 ⊢ (𝑧 = 𝑥 → {𝑧} = {𝑥}) | |
3 | 2 | eqeq2d 2632 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑢 = {𝑧} ↔ 𝑢 = {𝑥})) |
4 | 3 | cbvrexv 3172 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 𝑢 = {𝑧} ↔ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}) |
5 | 4 | abbii 2739 | . . 3 ⊢ {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
6 | 1, 5 | eqtr4i 2647 | . 2 ⊢ 𝐶 = {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} |
7 | 6 | dissneqlem 33187 | 1 ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ∃wrex 2913 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 ‘cfv 5888 TopOnctopon 20715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-top 20699 df-topon 20716 |
This theorem is referenced by: topdifinffinlem 33195 |
Copyright terms: Public domain | W3C validator |