| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmopab3 | Structured version Visualization version GIF version | ||
| Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
| Ref | Expression |
|---|---|
| dmopab3 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2917 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦𝜑)) | |
| 2 | pm4.71 662 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ∃𝑦𝜑) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) | |
| 3 | 2 | albii 1747 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) |
| 4 | dmopab 5335 | . . . . 5 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 5 | 19.42v 1918 | . . . . . 6 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 6 | 5 | abbii 2739 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
| 7 | 4, 6 | eqtri 2644 | . . . 4 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
| 8 | 7 | eqeq1i 2627 | . . 3 ⊢ (dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} = 𝐴) |
| 9 | eqcom 2629 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} = 𝐴) | |
| 10 | abeq2 2732 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) | |
| 11 | 8, 9, 10 | 3bitr2ri 289 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
| 12 | 1, 3, 11 | 3bitri 286 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 ∀wral 2912 {copab 4712 dom cdm 5114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-dm 5124 |
| This theorem is referenced by: dmxp 5344 fnopabg 6017 opabn1stprc 7228 n0el2 34103 |
| Copyright terms: Public domain | W3C validator |