![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabn1stprc | Structured version Visualization version GIF version |
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wwf. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
opabn1stprc | ⊢ (∃𝑦𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3203 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
2 | 1 | biantrur 527 | . . . . . . 7 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
3 | 2 | opabbii 4717 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} |
4 | 3 | dmeqi 5325 | . . . . 5 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} |
5 | id 22 | . . . . . . 7 ⊢ (∃𝑦𝜑 → ∃𝑦𝜑) | |
6 | 5 | ralrimivw 2967 | . . . . . 6 ⊢ (∃𝑦𝜑 → ∀𝑥 ∈ V ∃𝑦𝜑) |
7 | dmopab3 5337 | . . . . . 6 ⊢ (∀𝑥 ∈ V ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} = V) | |
8 | 6, 7 | sylib 208 | . . . . 5 ⊢ (∃𝑦𝜑 → dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} = V) |
9 | 4, 8 | syl5eq 2668 | . . . 4 ⊢ (∃𝑦𝜑 → dom {〈𝑥, 𝑦〉 ∣ 𝜑} = V) |
10 | vprc 4796 | . . . . 5 ⊢ ¬ V ∈ V | |
11 | 10 | a1i 11 | . . . 4 ⊢ (∃𝑦𝜑 → ¬ V ∈ V) |
12 | 9, 11 | eqneltrd 2720 | . . 3 ⊢ (∃𝑦𝜑 → ¬ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) |
13 | dmexg 7097 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V → dom {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) | |
14 | 12, 13 | nsyl 135 | . 2 ⊢ (∃𝑦𝜑 → ¬ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) |
15 | df-nel 2898 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V ↔ ¬ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) | |
16 | 14, 15 | sylibr 224 | 1 ⊢ (∃𝑦𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∉ wnel 2897 ∀wral 2912 Vcvv 3200 {copab 4712 dom cdm 5114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-cnv 5122 df-dm 5124 df-rn 5125 |
This theorem is referenced by: griedg0prc 26156 |
Copyright terms: Public domain | W3C validator |