![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmpropg | Structured version Visualization version GIF version |
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmpropg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnopg 5606 | . . 3 ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
2 | dmsnopg 5606 | . . 3 ⊢ (𝐷 ∈ 𝑊 → dom {〈𝐶, 𝐷〉} = {𝐶}) | |
3 | uneq12 3762 | . . 3 ⊢ ((dom {〈𝐴, 𝐵〉} = {𝐴} ∧ dom {〈𝐶, 𝐷〉} = {𝐶}) → (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) = ({𝐴} ∪ {𝐶})) | |
4 | 1, 2, 3 | syl2an 494 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) = ({𝐴} ∪ {𝐶})) |
5 | df-pr 4180 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) | |
6 | 5 | dmeqi 5325 | . . 3 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = dom ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) |
7 | dmun 5331 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) = (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) | |
8 | 6, 7 | eqtri 2644 | . 2 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) |
9 | df-pr 4180 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
10 | 4, 8, 9 | 3eqtr4g 2681 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 {csn 4177 {cpr 4179 〈cop 4183 dom cdm 5114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-dm 5124 |
This theorem is referenced by: dmprop 5610 funtpg 5942 funtpgOLD 5943 fnprg 5947 hashdmpropge2 13265 s2dmALT 13653 s4dom 13664 estrreslem2 16778 structiedg0val 25911 structgrssvtxlemOLD 25915 |
Copyright terms: Public domain | W3C validator |