![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashdmpropge2 | Structured version Visualization version GIF version |
Description: The size of the domain of a class which contains two ordered pairs with different first componens is greater than or mequal to 2. (Contributed by AV, 12-Nov-2021.) |
Ref | Expression |
---|---|
hashdmpropge2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
hashdmpropge2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
hashdmpropge2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
hashdmpropge2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
hashdmpropge2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑍) |
hashdmpropge2.n | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
hashdmpropge2.s | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) |
Ref | Expression |
---|---|
hashdmpropge2 | ⊢ (𝜑 → 2 ≤ (#‘dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashdmpropge2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑍) | |
2 | dmexg 7097 | . . 3 ⊢ (𝐹 ∈ 𝑍 → dom 𝐹 ∈ V) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
4 | hashdmpropge2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
5 | hashdmpropge2.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
6 | dmpropg 5608 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) | |
7 | 4, 5, 6 | syl2anc 693 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) |
8 | hashdmpropge2.s | . . . . 5 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) | |
9 | dmss 5323 | . . . . 5 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) |
11 | 7, 10 | eqsstr3d 3640 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐹) |
12 | hashdmpropge2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
13 | hashdmpropge2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
14 | prssg 4350 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) | |
15 | 12, 13, 14 | syl2anc 693 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) |
16 | hashdmpropge2.n | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
17 | neeq1 2856 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏)) | |
18 | neeq2 2857 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) | |
19 | 17, 18 | rspc2ev 3324 | . . . . . . 7 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
20 | 19 | 3expa 1265 | . . . . . 6 ⊢ (((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
21 | 20 | expcom 451 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
22 | 16, 21 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
23 | 15, 22 | sylbird 250 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ dom 𝐹 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
24 | 11, 23 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
25 | hashge2el2difr 13263 | . 2 ⊢ ((dom 𝐹 ∈ V ∧ ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) → 2 ≤ (#‘dom 𝐹)) | |
26 | 3, 24, 25 | syl2anc 693 | 1 ⊢ (𝜑 → 2 ≤ (#‘dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 {cpr 4179 〈cop 4183 class class class wbr 4653 dom cdm 5114 ‘cfv 5888 ≤ cle 10075 2c2 11070 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
This theorem is referenced by: structvtxvallem 25909 structgrssvtxlem 25912 |
Copyright terms: Public domain | W3C validator |