![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > structiedg0val | Structured version Visualization version GIF version |
Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) |
Ref | Expression |
---|---|
structvtxvallem.s | ⊢ 𝑆 ∈ ℕ |
structvtxvallem.b | ⊢ (Base‘ndx) < 𝑆 |
structvtxvallem.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} |
Ref | Expression |
---|---|
structiedg0val | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | structvtxvallem.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} | |
2 | structvtxvallem.b | . . . . 5 ⊢ (Base‘ndx) < 𝑆 | |
3 | structvtxvallem.s | . . . . 5 ⊢ 𝑆 ∈ ℕ | |
4 | 1, 2, 3 | 2strstr1 15986 | . . . 4 ⊢ 𝐺 Struct 〈(Base‘ndx), 𝑆〉 |
5 | structn0fun 15869 | . . . . 5 ⊢ (𝐺 Struct 〈(Base‘ndx), 𝑆〉 → Fun (𝐺 ∖ {∅})) | |
6 | 3, 2, 1 | structvtxvallem 25909 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2 ≤ (#‘dom 𝐺)) |
7 | funiedgdmge2val 25892 | . . . . 5 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (#‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺)) | |
8 | 5, 6, 7 | syl2an 494 | . . . 4 ⊢ ((𝐺 Struct 〈(Base‘ndx), 𝑆〉 ∧ (𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (iEdg‘𝐺) = (.ef‘𝐺)) |
9 | 4, 8 | mpan 706 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = (.ef‘𝐺)) |
10 | 9 | 3adant3 1081 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = (.ef‘𝐺)) |
11 | prex 4909 | . . . . . 6 ⊢ {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ∈ V | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} → {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ∈ V) |
13 | 1, 12 | syl5eqel 2705 | . . . 4 ⊢ (𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} → 𝐺 ∈ V) |
14 | edgfndxid 25871 | . . . 4 ⊢ (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | |
15 | 1, 13, 14 | mp2b 10 | . . 3 ⊢ (.ef‘𝐺) = (𝐺‘(.ef‘ndx)) |
16 | slotsbaseefdif 25873 | . . . . . . . . 9 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
17 | 16 | nesymi 2851 | . . . . . . . 8 ⊢ ¬ (.ef‘ndx) = (Base‘ndx) |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = (Base‘ndx)) |
19 | neneq 2800 | . . . . . . . . 9 ⊢ (𝑆 ≠ (.ef‘ndx) → ¬ 𝑆 = (.ef‘ndx)) | |
20 | eqcom 2629 | . . . . . . . . 9 ⊢ ((.ef‘ndx) = 𝑆 ↔ 𝑆 = (.ef‘ndx)) | |
21 | 19, 20 | sylnibr 319 | . . . . . . . 8 ⊢ (𝑆 ≠ (.ef‘ndx) → ¬ (.ef‘ndx) = 𝑆) |
22 | 21 | 3ad2ant3 1084 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = 𝑆) |
23 | ioran 511 | . . . . . . 7 ⊢ (¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆) ↔ (¬ (.ef‘ndx) = (Base‘ndx) ∧ ¬ (.ef‘ndx) = 𝑆)) | |
24 | 18, 22, 23 | sylanbrc 698 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆)) |
25 | fvex 6201 | . . . . . . 7 ⊢ (.ef‘ndx) ∈ V | |
26 | 25 | elpr 4198 | . . . . . 6 ⊢ ((.ef‘ndx) ∈ {(Base‘ndx), 𝑆} ↔ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆)) |
27 | 24, 26 | sylnibr 319 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ {(Base‘ndx), 𝑆}) |
28 | 1 | dmeqi 5325 | . . . . . 6 ⊢ dom 𝐺 = dom {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} |
29 | dmpropg 5608 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → dom {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} = {(Base‘ndx), 𝑆}) | |
30 | 29 | 3adant3 1081 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → dom {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} = {(Base‘ndx), 𝑆}) |
31 | 28, 30 | syl5eq 2668 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → dom 𝐺 = {(Base‘ndx), 𝑆}) |
32 | 27, 31 | neleqtrrd 2723 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ dom 𝐺) |
33 | ndmfv 6218 | . . . 4 ⊢ (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅) | |
34 | 32, 33 | syl 17 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (𝐺‘(.ef‘ndx)) = ∅) |
35 | 15, 34 | syl5eq 2668 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (.ef‘𝐺) = ∅) |
36 | 10, 35 | eqtrd 2656 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∖ cdif 3571 ∅c0 3915 {csn 4177 {cpr 4179 〈cop 4183 class class class wbr 4653 dom cdm 5114 Fun wfun 5882 ‘cfv 5888 < clt 10074 ≤ cle 10075 ℕcn 11020 2c2 11070 #chash 13117 Struct cstr 15853 ndxcnx 15854 Basecbs 15857 .efcedgf 25867 iEdgciedg 25875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-hash 13118 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-edgf 25868 df-iedg 25877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |