MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpop Structured version   Visualization version   GIF version

Theorem dmtpop 5611
Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1 𝐵 ∈ V
dmprop.1 𝐷 ∈ V
dmtpop.1 𝐹 ∈ V
Assertion
Ref Expression
dmtpop dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸}

Proof of Theorem dmtpop
StepHypRef Expression
1 df-tp 4182 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
21dmeqi 5325 . . 3 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = dom ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
3 dmun 5331 . . 3 dom ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) = (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ dom {⟨𝐸, 𝐹⟩})
4 dmsnop.1 . . . . 5 𝐵 ∈ V
5 dmprop.1 . . . . 5 𝐷 ∈ V
64, 5dmprop 5610 . . . 4 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}
7 dmtpop.1 . . . . 5 𝐹 ∈ V
87dmsnop 5609 . . . 4 dom {⟨𝐸, 𝐹⟩} = {𝐸}
96, 8uneq12i 3765 . . 3 (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ dom {⟨𝐸, 𝐹⟩}) = ({𝐴, 𝐶} ∪ {𝐸})
102, 3, 93eqtri 2648 . 2 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({𝐴, 𝐶} ∪ {𝐸})
11 df-tp 4182 . 2 {𝐴, 𝐶, 𝐸} = ({𝐴, 𝐶} ∪ {𝐸})
1210, 11eqtr4i 2647 1 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  {csn 4177  {cpr 4179  {ctp 4181  cop 4183  dom cdm 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-br 4654  df-dm 5124
This theorem is referenced by:  fntp  5949  fntpb  6473  cnfldfun  19758
  Copyright terms: Public domain W3C validator