| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmtpop | Structured version Visualization version Unicode version | ||
| Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| dmsnop.1 |
|
| dmprop.1 |
|
| dmtpop.1 |
|
| Ref | Expression |
|---|---|
| dmtpop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4182 |
. . . 4
| |
| 2 | 1 | dmeqi 5325 |
. . 3
|
| 3 | dmun 5331 |
. . 3
| |
| 4 | dmsnop.1 |
. . . . 5
| |
| 5 | dmprop.1 |
. . . . 5
| |
| 6 | 4, 5 | dmprop 5610 |
. . . 4
|
| 7 | dmtpop.1 |
. . . . 5
| |
| 8 | 7 | dmsnop 5609 |
. . . 4
|
| 9 | 6, 8 | uneq12i 3765 |
. . 3
|
| 10 | 2, 3, 9 | 3eqtri 2648 |
. 2
|
| 11 | df-tp 4182 |
. 2
| |
| 12 | 10, 11 | eqtr4i 2647 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-br 4654 df-dm 5124 |
| This theorem is referenced by: fntp 5949 fntpb 6473 cnfldfun 19758 |
| Copyright terms: Public domain | W3C validator |