![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domnrrg | Structured version Visualization version GIF version |
Description: In a domain, any nonzero element is a nonzero-divisor. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
isdomn2.b | ⊢ 𝐵 = (Base‘𝑅) |
isdomn2.t | ⊢ 𝐸 = (RLReg‘𝑅) |
isdomn2.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
domnrrg | ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdomn2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isdomn2.t | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
3 | isdomn2.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | isdomn2 19299 | . . . 4 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
5 | 4 | simprbi 480 | . . 3 ⊢ (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ⊆ 𝐸) |
6 | 5 | 3ad2ant1 1082 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐵 ∖ { 0 }) ⊆ 𝐸) |
7 | simp2 1062 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐵) | |
8 | simp3 1063 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
9 | eldifsn 4317 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
10 | 7, 8, 9 | sylanbrc 698 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝐵 ∖ { 0 })) |
11 | 6, 10 | sseldd 3604 | 1 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∖ cdif 3571 ⊆ wss 3574 {csn 4177 ‘cfv 5888 Basecbs 15857 0gc0g 16100 NzRingcnzr 19257 RLRegcrlreg 19279 Domncdomn 19280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-rlreg 19283 df-domn 19284 |
This theorem is referenced by: deg1ldgdomn 23854 |
Copyright terms: Public domain | W3C validator |