| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drsb1 | Structured version Visualization version GIF version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 2-Jun-1993.) |
| Ref | Expression |
|---|---|
| drsb1 | ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ1 1952 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 2 | 1 | sps 2055 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| 3 | 2 | imbi1d 331 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → 𝜑))) |
| 4 | 2 | anbi1d 741 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧 ∧ 𝜑) ↔ (𝑦 = 𝑧 ∧ 𝜑))) |
| 5 | 4 | drex1 2327 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑧 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑))) |
| 6 | 3, 5 | anbi12d 747 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (((𝑥 = 𝑧 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑)) ↔ ((𝑦 = 𝑧 → 𝜑) ∧ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑)))) |
| 7 | df-sb 1881 | . 2 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ((𝑥 = 𝑧 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) | |
| 8 | df-sb 1881 | . 2 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ((𝑦 = 𝑧 → 𝜑) ∧ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑))) | |
| 9 | 6, 7, 8 | 3bitr4g 303 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∃wex 1704 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbco3 2417 iotaeq 5859 |
| Copyright terms: Public domain | W3C validator |