![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvds0lem | Structured version Visualization version GIF version |
Description: A lemma to assist theorems of ∥ with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds0lem | ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6657 | . . . . . . . . 9 ⊢ (𝑥 = 𝐾 → (𝑥 · 𝑀) = (𝐾 · 𝑀)) | |
2 | 1 | eqeq1d 2624 | . . . . . . . 8 ⊢ (𝑥 = 𝐾 → ((𝑥 · 𝑀) = 𝑁 ↔ (𝐾 · 𝑀) = 𝑁)) |
3 | 2 | rspcev 3309 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁) |
4 | 3 | adantl 482 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁) |
5 | divides 14985 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁)) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → (𝑀 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁)) |
7 | 4, 6 | mpbird 247 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → 𝑀 ∥ 𝑁) |
8 | 7 | expr 643 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁 → 𝑀 ∥ 𝑁)) |
9 | 8 | 3impa 1259 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁 → 𝑀 ∥ 𝑁)) |
10 | 9 | 3comr 1273 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁 → 𝑀 ∥ 𝑁)) |
11 | 10 | imp 445 | 1 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀 ∥ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 class class class wbr 4653 (class class class)co 6650 · cmul 9941 ℤcz 11377 ∥ cdvds 14983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-ov 6653 df-dvds 14984 |
This theorem is referenced by: iddvds 14995 1dvds 14996 dvds0 14997 dvdsmul1 15003 dvdsmul2 15004 divalgmod 15129 divalgmodOLD 15130 isprm5 15419 ex-dvds 27313 oddpwdc 30416 inductionexd 38453 |
Copyright terms: Public domain | W3C validator |