MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm5 Structured version   Visualization version   GIF version

Theorem isprm5 15419
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isprm4 15397 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)))
2 prmuz2 15408 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
32a1i 11 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2)))
4 eluz2b2 11761 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
54simprbi 480 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
6 eluzelre 11698 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
7 eluz2nn 11726 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
87nngt0d 11064 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 0 < 𝑃)
9 ltmulgt11 10883 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 0 < 𝑃) → (1 < 𝑃𝑃 < (𝑃 · 𝑃)))
106, 6, 8, 9syl3anc 1326 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → (1 < 𝑃𝑃 < (𝑃 · 𝑃)))
115, 10mpbid 222 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → 𝑃 < (𝑃 · 𝑃))
126, 6remulcld 10070 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → (𝑃 · 𝑃) ∈ ℝ)
136, 12ltnled 10184 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → (𝑃 < (𝑃 · 𝑃) ↔ ¬ (𝑃 · 𝑃) ≤ 𝑃))
1411, 13mpbid 222 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → ¬ (𝑃 · 𝑃) ≤ 𝑃)
15 oveq12 6659 . . . . . . . . . . . . 13 ((𝑧 = 𝑃𝑧 = 𝑃) → (𝑧 · 𝑧) = (𝑃 · 𝑃))
1615anidms 677 . . . . . . . . . . . 12 (𝑧 = 𝑃 → (𝑧 · 𝑧) = (𝑃 · 𝑃))
1716breq1d 4663 . . . . . . . . . . 11 (𝑧 = 𝑃 → ((𝑧 · 𝑧) ≤ 𝑃 ↔ (𝑃 · 𝑃) ≤ 𝑃))
1817notbid 308 . . . . . . . . . 10 (𝑧 = 𝑃 → (¬ (𝑧 · 𝑧) ≤ 𝑃 ↔ ¬ (𝑃 · 𝑃) ≤ 𝑃))
1914, 18syl5ibrcom 237 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → (𝑧 = 𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃))
2019imim2d 57 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃𝑧 = 𝑃) → (𝑧𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃)))
21 con2 130 . . . . . . . 8 ((𝑧𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
2220, 21syl6 35 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃𝑧 = 𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
233, 22imim12d 81 . . . . . 6 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ (ℤ‘2) → (𝑧𝑃𝑧 = 𝑃)) → (𝑧 ∈ ℙ → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))))
2423ralimdv2 2961 . . . . 5 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) → ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
25 annim 441 . . . . . . . . 9 ((𝑧𝑃 ∧ ¬ 𝑧 = 𝑃) ↔ ¬ (𝑧𝑃𝑧 = 𝑃))
26 oveq12 6659 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑧𝑥 = 𝑧) → (𝑥 · 𝑥) = (𝑧 · 𝑧))
2726anidms 677 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥 · 𝑥) = (𝑧 · 𝑧))
2827breq1d 4663 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥 · 𝑥) ≤ 𝑃 ↔ (𝑧 · 𝑧) ≤ 𝑃))
29 breq1 4656 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥𝑃𝑧𝑃))
3028, 29anbi12d 747 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) ↔ ((𝑧 · 𝑧) ≤ 𝑃𝑧𝑃)))
3130rspcev 3309 . . . . . . . . . . . . . 14 ((𝑧 ∈ (ℤ‘2) ∧ ((𝑧 · 𝑧) ≤ 𝑃𝑧𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
3231ancom2s 844 . . . . . . . . . . . . 13 ((𝑧 ∈ (ℤ‘2) ∧ (𝑧𝑃 ∧ (𝑧 · 𝑧) ≤ 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
3332expr 643 . . . . . . . . . . . 12 ((𝑧 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
3433ad2ant2lr 784 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) ≤ 𝑃 → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
35 simprl 794 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
36 eluzelz 11697 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
3736ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℤ)
38 eluz2nn 11726 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ)
3938ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℕ)
4039nnne0d 11065 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ≠ 0)
41 eluzelz 11697 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
4241ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℤ)
43 dvdsval2 14986 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℤ))
4437, 40, 42, 43syl3anc 1326 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℤ))
4535, 44mpbid 222 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∈ ℤ)
46 eluzelre 11698 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℝ)
4746ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℝ)
4847recnd 10068 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℂ)
4948mulid2d 10058 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (1 · 𝑧) = 𝑧)
507ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℕ)
51 dvdsle 15032 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
5251imp 445 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ 𝑧𝑃) → 𝑧𝑃)
5337, 50, 35, 52syl21anc 1325 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
54 simprr 796 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ¬ 𝑧 = 𝑃)
5554neqned 2801 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
5655necomd 2849 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃𝑧)
576ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℝ)
5847, 57ltlend 10182 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 < 𝑃 ↔ (𝑧𝑃𝑃𝑧)))
5953, 56, 58mpbir2and 957 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 < 𝑃)
6049, 59eqbrtrd 4675 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (1 · 𝑧) < 𝑃)
61 1red 10055 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 1 ∈ ℝ)
6242zred 11482 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℝ)
63 nnre 11027 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
64 nngt0 11049 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ → 0 < 𝑧)
6563, 64jca 554 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
6639, 65syl 17 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
67 ltmuldiv 10896 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) → ((1 · 𝑧) < 𝑃 ↔ 1 < (𝑃 / 𝑧)))
6861, 62, 66, 67syl3anc 1326 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((1 · 𝑧) < 𝑃 ↔ 1 < (𝑃 / 𝑧)))
6960, 68mpbid 222 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 1 < (𝑃 / 𝑧))
70 eluz2b1 11759 . . . . . . . . . . . . 13 ((𝑃 / 𝑧) ∈ (ℤ‘2) ↔ ((𝑃 / 𝑧) ∈ ℤ ∧ 1 < (𝑃 / 𝑧)))
7145, 69, 70sylanbrc 698 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∈ (ℤ‘2))
7247, 47remulcld 10070 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℝ)
7339, 39nnmulcld 11068 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℕ)
74 nnrp 11842 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
75 nnrp 11842 . . . . . . . . . . . . . . . . . 18 ((𝑧 · 𝑧) ∈ ℕ → (𝑧 · 𝑧) ∈ ℝ+)
76 rpdivcl 11856 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℝ+ ∧ (𝑧 · 𝑧) ∈ ℝ+) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7774, 75, 76syl2an 494 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℕ ∧ (𝑧 · 𝑧) ∈ ℕ) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7850, 73, 77syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7957, 72, 78lemul1d 11915 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) ↔ (𝑃 · (𝑃 / (𝑧 · 𝑧))) ≤ ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧)))))
8057recnd 10068 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℂ)
8180, 48, 80, 48, 40, 40divmuldivd 10842 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) = ((𝑃 · 𝑃) / (𝑧 · 𝑧)))
8273nncnd 11036 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℂ)
8373nnne0d 11065 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ≠ 0)
8480, 80, 82, 83divassd 10836 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 · 𝑃) / (𝑧 · 𝑧)) = (𝑃 · (𝑃 / (𝑧 · 𝑧))))
8581, 84eqtrd 2656 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) = (𝑃 · (𝑃 / (𝑧 · 𝑧))))
8680, 82, 83divcan2d 10803 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧))) = 𝑃)
8786eqcomd 2628 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 = ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧))))
8885, 87breq12d 4666 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ↔ (𝑃 · (𝑃 / (𝑧 · 𝑧))) ≤ ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧)))))
8979, 88bitr4d 271 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) ↔ ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
9089biimpd 219 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
9180, 48, 40divcan2d 10803 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · (𝑃 / 𝑧)) = 𝑃)
92 dvds0lem 14992 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (𝑧 · (𝑃 / 𝑧)) = 𝑃) → (𝑃 / 𝑧) ∥ 𝑃)
9337, 45, 42, 91, 92syl31anc 1329 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∥ 𝑃)
9490, 93jctird 567 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)))
95 oveq12 6659 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑃 / 𝑧) ∧ 𝑥 = (𝑃 / 𝑧)) → (𝑥 · 𝑥) = ((𝑃 / 𝑧) · (𝑃 / 𝑧)))
9695anidms 677 . . . . . . . . . . . . . . 15 (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑥) = ((𝑃 / 𝑧) · (𝑃 / 𝑧)))
9796breq1d 4663 . . . . . . . . . . . . . 14 (𝑥 = (𝑃 / 𝑧) → ((𝑥 · 𝑥) ≤ 𝑃 ↔ ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
98 breq1 4656 . . . . . . . . . . . . . 14 (𝑥 = (𝑃 / 𝑧) → (𝑥𝑃 ↔ (𝑃 / 𝑧) ∥ 𝑃))
9997, 98anbi12d 747 . . . . . . . . . . . . 13 (𝑥 = (𝑃 / 𝑧) → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) ↔ (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)))
10099rspcev 3309 . . . . . . . . . . . 12 (((𝑃 / 𝑧) ∈ (ℤ‘2) ∧ (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
10171, 94, 100syl6an 568 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
10272, 57letrid 10189 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) ≤ 𝑃𝑃 ≤ (𝑧 · 𝑧)))
10334, 101, 102mpjaod 396 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
104103ex 450 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑧𝑃 ∧ ¬ 𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
10525, 104syl5bir 233 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
106105rexlimdva 3031 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
107 prmz 15389 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
108107ad2antrl 764 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧 ∈ ℤ)
109108zred 11482 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧 ∈ ℝ)
110109, 109remulcld 10070 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ∈ ℝ)
111 eluzelz 11697 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℤ)
112111ad3antlr 767 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℤ)
113112zred 11482 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℝ)
114113, 113remulcld 10070 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑥 · 𝑥) ∈ ℝ)
11541ad3antrrr 766 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑃 ∈ ℤ)
116115zred 11482 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑃 ∈ ℝ)
117 eluz2nn 11726 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℕ)
118117ad3antlr 767 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℕ)
119 simprr 796 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑥)
120 dvdsle 15032 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑧𝑥𝑧𝑥))
121120imp 445 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ) ∧ 𝑧𝑥) → 𝑧𝑥)
122108, 118, 119, 121syl21anc 1325 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑥)
123 eluzge2nn0 11727 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ0)
124123nn0ge0d 11354 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 0 ≤ 𝑧)
1252, 124syl 17 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 0 ≤ 𝑧)
126125ad2antrl 764 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 0 ≤ 𝑧)
127 nnnn0 11299 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
128127nn0ge0d 11354 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ → 0 ≤ 𝑥)
129118, 128syl 17 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 0 ≤ 𝑥)
130 le2msq 10923 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑧𝑥 ↔ (𝑧 · 𝑧) ≤ (𝑥 · 𝑥)))
131109, 126, 113, 129, 130syl22anc 1327 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧𝑥 ↔ (𝑧 · 𝑧) ≤ (𝑥 · 𝑥)))
132122, 131mpbid 222 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ≤ (𝑥 · 𝑥))
133 simplrl 800 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑥 · 𝑥) ≤ 𝑃)
134110, 114, 116, 132, 133letrd 10194 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ≤ 𝑃)
135 simplrr 801 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥𝑃)
136 dvdstr 15018 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑧𝑥𝑥𝑃) → 𝑧𝑃))
137108, 112, 115, 136syl3anc 1326 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → ((𝑧𝑥𝑥𝑃) → 𝑧𝑃))
138119, 135, 137mp2and 715 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑃)
139134, 138jc 159 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
140 exprmfct 15416 . . . . . . . . . . 11 (𝑥 ∈ (ℤ‘2) → ∃𝑧 ∈ ℙ 𝑧𝑥)
141140ad2antlr 763 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) → ∃𝑧 ∈ ℙ 𝑧𝑥)
142139, 141reximddv 3018 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
143142ex 450 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
144143rexlimdva 3031 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
145106, 144syld 47 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
146 rexnal 2995 . . . . . 6 (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) ↔ ¬ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃))
147 rexnal 2995 . . . . . 6 (∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ¬ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
148145, 146, 1473imtr3g 284 . . . . 5 (𝑃 ∈ (ℤ‘2) → (¬ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) → ¬ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
14924, 148impcon4bid 217 . . . 4 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
150 prmnn 15388 . . . . . . . . 9 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
151150nncnd 11036 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ ℂ)
152151sqvald 13005 . . . . . . 7 (𝑧 ∈ ℙ → (𝑧↑2) = (𝑧 · 𝑧))
153152breq1d 4663 . . . . . 6 (𝑧 ∈ ℙ → ((𝑧↑2) ≤ 𝑃 ↔ (𝑧 · 𝑧) ≤ 𝑃))
154153imbi1d 331 . . . . 5 (𝑧 ∈ ℙ → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
155154ralbiia 2979 . . . 4 (∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
156149, 155syl6bbr 278 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
157156pm5.32i 669 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
1581, 157bitri 264 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  cz 11377  cuz 11687  +crp 11832  cexp 12860  cdvds 14983  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  isprm7  15420  pockthg  15610  prmlem1a  15813
  Copyright terms: Public domain W3C validator