| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvelimf | Structured version Visualization version GIF version | ||
| Description: Version of dvelimv 2338 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
| Ref | Expression |
|---|---|
| dvelimf.1 | ⊢ Ⅎ𝑥𝜑 |
| dvelimf.2 | ⊢ Ⅎ𝑧𝜓 |
| dvelimf.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| dvelimf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimf.2 | . . . 4 ⊢ Ⅎ𝑧𝜓 | |
| 2 | dvelimf.3 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | equsal 2291 | . . 3 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) |
| 4 | 3 | bicomi 214 | . 2 ⊢ (𝜓 ↔ ∀𝑧(𝑧 = 𝑦 → 𝜑)) |
| 5 | nfnae 2318 | . . 3 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 6 | nfeqf 2301 | . . . . 5 ⊢ ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦) | |
| 7 | 6 | ancoms 469 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧 = 𝑦) |
| 8 | dvelimf.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝜑) |
| 10 | 7, 9 | nfimd 1823 | . . 3 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) |
| 11 | 5, 10 | nfald2 2331 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜑)) |
| 12 | 4, 11 | nfxfrd 1780 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: dvelimdf 2335 dvelimh 2336 dvelimnf 2339 |
| Copyright terms: Public domain | W3C validator |