| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvelimh | Structured version Visualization version GIF version | ||
| Description: Version of dvelim 2337 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
| Ref | Expression |
|---|---|
| dvelimh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| dvelimh.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
| dvelimh.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| dvelimh | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimh.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | nf5i 2024 | . . 3 ⊢ Ⅎ𝑥𝜑 |
| 3 | dvelimh.2 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 4 | 3 | nf5i 2024 | . . 3 ⊢ Ⅎ𝑧𝜓 |
| 5 | dvelimh.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 2, 4, 5 | dvelimf 2334 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
| 7 | 6 | nf5rd 2066 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: dvelim 2337 dveeq1-o16 34221 dveel2ALT 34224 ax6e2nd 38774 ax6e2ndVD 39144 ax6e2ndALT 39166 |
| Copyright terms: Public domain | W3C validator |