| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecopoverOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of ecopover 7851 as of 1-May-2021. Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∼, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ecopopr.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
| ecopopr.com | ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) |
| ecopopr.cl | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
| ecopopr.ass | ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) |
| ecopopr.can | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) |
| Ref | Expression |
|---|---|
| ecopoverOLD | ⊢ ∼ Er (𝑆 × 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 | . . . . 5 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} | |
| 2 | 1 | relopabi 5245 | . . . 4 ⊢ Rel ∼ |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Rel ∼ ) |
| 4 | ecopopr.com | . . . . 5 ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) | |
| 5 | 1, 4 | ecopovsym 7849 | . . . 4 ⊢ (𝑓 ∼ 𝑔 → 𝑔 ∼ 𝑓) |
| 6 | 5 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑓 ∼ 𝑔) → 𝑔 ∼ 𝑓) |
| 7 | ecopopr.cl | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 8 | ecopopr.ass | . . . . 5 ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) | |
| 9 | ecopopr.can | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) | |
| 10 | 1, 4, 7, 8, 9 | ecopovtrn 7850 | . . . 4 ⊢ ((𝑓 ∼ 𝑔 ∧ 𝑔 ∼ ℎ) → 𝑓 ∼ ℎ) |
| 11 | 10 | adantl 482 | . . 3 ⊢ ((⊤ ∧ (𝑓 ∼ 𝑔 ∧ 𝑔 ∼ ℎ)) → 𝑓 ∼ ℎ) |
| 12 | vex 3203 | . . . . . . . . . . 11 ⊢ 𝑔 ∈ V | |
| 13 | vex 3203 | . . . . . . . . . . 11 ⊢ ℎ ∈ V | |
| 14 | 12, 13, 4 | caovcom 6831 | . . . . . . . . . 10 ⊢ (𝑔 + ℎ) = (ℎ + 𝑔) |
| 15 | 1 | ecopoveq 7848 | . . . . . . . . . 10 ⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → (〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 ↔ (𝑔 + ℎ) = (ℎ + 𝑔))) |
| 16 | 14, 15 | mpbiri 248 | . . . . . . . . 9 ⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
| 17 | 16 | anidms 677 | . . . . . . . 8 ⊢ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
| 18 | 17 | rgen2a 2977 | . . . . . . 7 ⊢ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 |
| 19 | breq12 4658 | . . . . . . . . 9 ⊢ ((𝑓 = 〈𝑔, ℎ〉 ∧ 𝑓 = 〈𝑔, ℎ〉) → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) | |
| 20 | 19 | anidms 677 | . . . . . . . 8 ⊢ (𝑓 = 〈𝑔, ℎ〉 → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) |
| 21 | 20 | ralxp 5263 | . . . . . . 7 ⊢ (∀𝑓 ∈ (𝑆 × 𝑆)𝑓 ∼ 𝑓 ↔ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
| 22 | 18, 21 | mpbir 221 | . . . . . 6 ⊢ ∀𝑓 ∈ (𝑆 × 𝑆)𝑓 ∼ 𝑓 |
| 23 | 22 | rspec 2931 | . . . . 5 ⊢ (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 ∼ 𝑓) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 ∼ 𝑓)) |
| 25 | opabssxp 5193 | . . . . . . 7 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) | |
| 26 | 1, 25 | eqsstri 3635 | . . . . . 6 ⊢ ∼ ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
| 27 | 26 | ssbri 4697 | . . . . 5 ⊢ (𝑓 ∼ 𝑓 → 𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓) |
| 28 | brxp 5147 | . . . . . 6 ⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆))) | |
| 29 | 28 | simplbi 476 | . . . . 5 ⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
| 30 | 27, 29 | syl 17 | . . . 4 ⊢ (𝑓 ∼ 𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
| 31 | 24, 30 | impbid1 215 | . . 3 ⊢ (⊤ → (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 ∼ 𝑓)) |
| 32 | 3, 6, 11, 31 | iserd 7768 | . 2 ⊢ (⊤ → ∼ Er (𝑆 × 𝑆)) |
| 33 | 32 | trud 1493 | 1 ⊢ ∼ Er (𝑆 × 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ⊤wtru 1484 ∃wex 1704 ∈ wcel 1990 ∀wral 2912 〈cop 4183 class class class wbr 4653 {copab 4712 × cxp 5112 Rel wrel 5119 (class class class)co 6650 Er wer 7739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 df-er 7742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |