MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elALT Structured version   Visualization version   GIF version

Theorem elALT 4910
Description: Alternate proof of el 4847, shorter but requiring more axioms. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elALT 𝑦 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem elALT
StepHypRef Expression
1 vex 3203 . . 3 𝑥 ∈ V
21snid 4208 . 2 𝑥 ∈ {𝑥}
3 snex 4908 . . 3 {𝑥} ∈ V
4 eleq2 2690 . . 3 (𝑦 = {𝑥} → (𝑥𝑦𝑥 ∈ {𝑥}))
53, 4spcev 3300 . 2 (𝑥 ∈ {𝑥} → ∃𝑦 𝑥𝑦)
62, 5ax-mp 5 1 𝑦 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wex 1704  wcel 1990  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator