![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcev | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcegv 3294 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∃wex 1704 ∈ wcel 1990 Vcvv 3200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 |
This theorem is referenced by: dtruALT 4899 elALT 4910 dtruALT2 4911 nnullss 4930 exss 4931 euotd 4975 opeldm 5328 elrnmpt1 5374 xpnz 5553 ssimaex 6263 fvelrn 6352 dff3 6372 exfo 6377 eufnfv 6491 elunirn 6509 fsnex 6538 f1prex 6539 foeqcnvco 6555 snnexOLD 6967 ffoss 7127 op1steq 7210 frxp 7287 suppimacnv 7306 seqomlem2 7546 domtr 8009 ensn1 8020 en1 8023 enfixsn 8069 php3 8146 1sdom 8163 isinf 8173 ssfi 8180 ac6sfi 8204 hartogslem1 8447 brwdom2 8478 inf0 8518 axinf2 8537 cnfcom3clem 8602 tz9.1 8605 tz9.1c 8606 rankuni 8726 scott0 8749 cplem2 8753 bnd2 8756 karden 8758 cardprclem 8805 dfac4 8945 dfac5lem5 8950 dfac5 8951 dfac2a 8952 dfac2 8953 kmlem2 8973 kmlem13 8984 ackbij2 9065 cfsuc 9079 cfflb 9081 cfss 9087 cfsmolem 9092 cfcoflem 9094 fin23lem32 9166 axcc2lem 9258 axcc3 9260 axdc2lem 9270 axdc3lem2 9273 axcclem 9279 brdom3 9350 brdom7disj 9353 brdom6disj 9354 axpowndlem3 9421 canthnumlem 9470 canthp1lem2 9475 inar1 9597 recmulnq 9786 ltexnq 9797 halfnq 9798 ltbtwnnq 9800 1idpr 9851 ltexprlem7 9864 reclem2pr 9870 reclem3pr 9871 sup2 10979 nnunb 11288 uzrdgfni 12757 axdc4uzlem 12782 rtrclreclem3 13800 ntrivcvgmullem 14633 fprodntriv 14672 cnso 14976 vdwapun 15678 vdwlem1 15685 vdwlem12 15696 vdwlem13 15697 isacs2 16314 equivestrcsetc 16792 psgneu 17926 efglem 18129 lmisfree 20181 toprntopon 20729 neitr 20984 cmpsublem 21202 cmpsub 21203 bwth 21213 1stcfb 21248 unisngl 21330 alexsubALTlem3 21853 alexsubALTlem4 21854 vitali 23382 mbfi1fseqlem6 23487 mbfi1flimlem 23489 aannenlem2 24084 istrkg2ld 25359 axlowdim 25841 wlkpwwlkf1ouspgr 26765 wlkisowwlkupgr 26766 padct 29497 cnvoprab 29498 f1ocnt 29559 locfinreflem 29907 locfinref 29908 prsdm 29960 prsrn 29961 eulerpart 30444 bnj150 30946 trpredpred 31728 nosupno 31849 nosupfv 31852 fnsingle 32026 finminlem 32312 filnetlem3 32375 cnndvlem2 32529 bj-restpw 33045 bj-rest0 33046 poimirlem2 33411 mblfinlem3 33448 mblfinlem4 33449 ismblfin 33450 itg2addnclem 33461 itg2addnc 33464 indexdom 33529 sdclem2 33538 fdc 33541 prtlem16 34154 dihglblem2aN 36582 eldioph2lem2 37324 dford3lem2 37594 aomclem7 37630 dfac11 37632 relintabex 37887 rclexi 37922 trclexi 37927 rtrclexi 37928 fnchoice 39188 ssnnf1octb 39382 fzisoeu 39514 stoweidlem28 40245 nnfoctbdjlem 40672 smfpimcclem 41013 setrec1lem3 42436 setrec2lem2 42441 |
Copyright terms: Public domain | W3C validator |