MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvmptrab1 Structured version   Visualization version   GIF version

Theorem elfvmptrab1 6305
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab1.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
elfvmptrab1.v (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌   𝑦,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐹(𝑥,𝑦,𝑚)   𝑀(𝑚)   𝑉(𝑦,𝑚)   𝑋(𝑚)   𝑌(𝑥,𝑚)

Proof of Theorem elfvmptrab1
StepHypRef Expression
1 ne0i 3921 . . 3 (𝑌 ∈ (𝐹𝑋) → (𝐹𝑋) ≠ ∅)
2 ndmfv 6218 . . . 4 𝑋 ∈ dom 𝐹 → (𝐹𝑋) = ∅)
32necon1ai 2821 . . 3 ((𝐹𝑋) ≠ ∅ → 𝑋 ∈ dom 𝐹)
4 elfvmptrab1.f . . . . . . . 8 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
54dmmptss 5631 . . . . . . 7 dom 𝐹𝑉
65sseli 3599 . . . . . 6 (𝑋 ∈ dom 𝐹𝑋𝑉)
7 elfvmptrab1.v . . . . . . 7 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
8 rabexg 4812 . . . . . . 7 (𝑋 / 𝑚𝑀 ∈ V → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
96, 7, 83syl 18 . . . . . 6 (𝑋 ∈ dom 𝐹 → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
10 nfcv 2764 . . . . . . 7 𝑥𝑋
11 nfsbc1v 3455 . . . . . . . 8 𝑥[𝑋 / 𝑥]𝜑
12 nfcv 2764 . . . . . . . . 9 𝑥𝑀
1310, 12nfcsb 3551 . . . . . . . 8 𝑥𝑋 / 𝑚𝑀
1411, 13nfrab 3123 . . . . . . 7 𝑥{𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}
15 csbeq1 3536 . . . . . . . 8 (𝑥 = 𝑋𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
16 sbceq1a 3446 . . . . . . . 8 (𝑥 = 𝑋 → (𝜑[𝑋 / 𝑥]𝜑))
1715, 16rabeqbidv 3195 . . . . . . 7 (𝑥 = 𝑋 → {𝑦𝑥 / 𝑚𝑀𝜑} = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
1810, 14, 17, 4fvmptf 6301 . . . . . 6 ((𝑋𝑉 ∧ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V) → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
196, 9, 18syl2anc 693 . . . . 5 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
2019eleq2d 2687 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) ↔ 𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}))
21 elrabi 3359 . . . . . 6 (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → 𝑌𝑋 / 𝑚𝑀)
226, 21anim12i 590 . . . . 5 ((𝑋 ∈ dom 𝐹𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
2322ex 450 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
2420, 23sylbid 230 . . 3 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
251, 3, 243syl 18 . 2 (𝑌 ∈ (𝐹𝑋) → (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
2625pm2.43i 52 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  [wsbc 3435  csb 3533  c0 3915  cmpt 4729  dom cdm 5114  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  elfvmptrab  6306
  Copyright terms: Public domain W3C validator