Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliuniin Structured version   Visualization version   GIF version

Theorem eliuniin 39279
Description: Indexed union of indexed intersections. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
eliuniin.1 𝐴 = 𝑥𝐵 𝑦𝐶 𝐷
Assertion
Ref Expression
eliuniin (𝑍𝑉 → (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝑍   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem eliuniin
StepHypRef Expression
1 eliuniin.1 . . . . 5 𝐴 = 𝑥𝐵 𝑦𝐶 𝐷
21eleq2i 2693 . . . 4 (𝑍𝐴𝑍 𝑥𝐵 𝑦𝐶 𝐷)
3 eliun 4524 . . . 4 (𝑍 𝑥𝐵 𝑦𝐶 𝐷 ↔ ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
42, 3sylbb 209 . . 3 (𝑍𝐴 → ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
5 eliin 4525 . . . . . 6 (𝑍 𝑦𝐶 𝐷 → (𝑍 𝑦𝐶 𝐷 ↔ ∀𝑦𝐶 𝑍𝐷))
65ibi 256 . . . . 5 (𝑍 𝑦𝐶 𝐷 → ∀𝑦𝐶 𝑍𝐷)
76a1i 11 . . . 4 (𝑍𝐴 → (𝑍 𝑦𝐶 𝐷 → ∀𝑦𝐶 𝑍𝐷))
87reximdv 3016 . . 3 (𝑍𝐴 → (∃𝑥𝐵 𝑍 𝑦𝐶 𝐷 → ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
94, 8mpd 15 . 2 (𝑍𝐴 → ∃𝑥𝐵𝑦𝐶 𝑍𝐷)
10 simp2 1062 . . . . . 6 ((𝑍𝑉𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑥𝐵)
11 eliin 4525 . . . . . . 7 (𝑍𝑉 → (𝑍 𝑦𝐶 𝐷 ↔ ∀𝑦𝐶 𝑍𝐷))
1211biimpar 502 . . . . . 6 ((𝑍𝑉 ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑍 𝑦𝐶 𝐷)
13 rspe 3003 . . . . . 6 ((𝑥𝐵𝑍 𝑦𝐶 𝐷) → ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
1410, 12, 133imp3i2an 1278 . . . . 5 ((𝑍𝑉𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
1514, 3sylibr 224 . . . 4 ((𝑍𝑉𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑍 𝑥𝐵 𝑦𝐶 𝐷)
1615, 2sylibr 224 . . 3 ((𝑍𝑉𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑍𝐴)
1716rexlimdv3a 3033 . 2 (𝑍𝑉 → (∃𝑥𝐵𝑦𝐶 𝑍𝐷𝑍𝐴))
189, 17impbid2 216 1 (𝑍𝑉 → (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913   ciun 4520   ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-iun 4522  df-iin 4523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator