| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvmpt21 | Structured version Visualization version GIF version | ||
| Description: Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| cbvmpt21.1 | ⊢ Ⅎ𝑥𝐵 |
| cbvmpt21.2 | ⊢ Ⅎ𝑧𝐵 |
| cbvmpt21.3 | ⊢ Ⅎ𝑧𝐶 |
| cbvmpt21.4 | ⊢ Ⅎ𝑥𝐸 |
| cbvmpt21.5 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| cbvmpt21 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 | . . . . 5 ⊢ Ⅎ𝑧 𝑥 ∈ 𝐴 | |
| 2 | cbvmpt21.2 | . . . . . 6 ⊢ Ⅎ𝑧𝐵 | |
| 3 | 2 | nfcri 2758 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 ∈ 𝐵 |
| 4 | 1, 3 | nfan 1828 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 5 | cbvmpt21.3 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
| 6 | 5 | nfeq2 2780 | . . . 4 ⊢ Ⅎ𝑧 𝑢 = 𝐶 |
| 7 | 4, 6 | nfan 1828 | . . 3 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) |
| 8 | nfv 1843 | . . . . 5 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 | |
| 9 | nfcv 2764 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 10 | cbvmpt21.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 11 | 9, 10 | nfel 2777 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 12 | 8, 11 | nfan 1828 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 13 | cbvmpt21.4 | . . . . 5 ⊢ Ⅎ𝑥𝐸 | |
| 14 | 13 | nfeq2 2780 | . . . 4 ⊢ Ⅎ𝑥 𝑢 = 𝐸 |
| 15 | 12, 14 | nfan 1828 | . . 3 ⊢ Ⅎ𝑥((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐸) |
| 16 | eleq1 2689 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 17 | 16 | anbi1d 741 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 18 | cbvmpt21.5 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
| 19 | 18 | eqeq2d 2632 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑢 = 𝐶 ↔ 𝑢 = 𝐸)) |
| 20 | 17, 19 | anbi12d 747 | . . 3 ⊢ (𝑥 = 𝑧 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐸))) |
| 21 | 7, 15, 20 | cbvoprab1 6727 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶)} = {〈〈𝑧, 𝑦〉, 𝑢〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐸)} |
| 22 | df-mpt2 6655 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶)} | |
| 23 | df-mpt2 6655 | . 2 ⊢ (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = {〈〈𝑧, 𝑦〉, 𝑢〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐸)} | |
| 24 | 21, 22, 23 | 3eqtr4i 2654 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Ⅎwnfc 2751 {coprab 6651 ↦ cmpt2 6652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |