![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmptrab2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of elmptrab2 21632 as of 26-Mar-2021. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elmptrab2.f | ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) |
elmptrab2.s1 | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
elmptrab2.s2 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
elmptrab2OLD.ex | ⊢ 𝐵 ∈ 𝑉 |
elmptrab2OLD.rc | ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) |
Ref | Expression |
---|---|
elmptrab2OLD | ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmptrab2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) | |
2 | elmptrab2.s1 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
3 | elmptrab2.s2 | . . 3 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
4 | elmptrab2OLD.ex | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ V → 𝐵 ∈ 𝑉) |
6 | 1, 2, 3, 5 | elmptrab 21630 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |
7 | 3simpc 1060 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) → (𝑌 ∈ 𝐶 ∧ 𝜓)) | |
8 | elmptrab2OLD.rc | . . . . . 6 ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) | |
9 | elex 3212 | . . . . . 6 ⊢ (𝑋 ∈ 𝑊 → 𝑋 ∈ V) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ V) |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑋 ∈ V) |
12 | simpl 473 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑌 ∈ 𝐶) | |
13 | simpr 477 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝜓) | |
14 | 11, 12, 13 | 3jca 1242 | . . 3 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → (𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |
15 | 7, 14 | impbii 199 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
16 | 6, 15 | bitri 264 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ↦ cmpt 4729 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |