![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elon | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elon.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elon | ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elon.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elong 5731 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 1990 Vcvv 3200 Ord word 5722 Oncon0 5723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-tr 4753 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 |
This theorem is referenced by: tron 5746 0elon 5778 smogt 7464 dfrecs3 7469 rdglim2 7528 omeulem1 7662 isfinite2 8218 r0weon 8835 cflim3 9084 inar1 9597 ellimits 32017 dford3lem2 37594 |
Copyright terms: Public domain | W3C validator |