MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem1 Structured version   Visualization version   GIF version

Theorem omeulem1 7662
Description: Lemma for omeu 7665: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeulem1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem omeulem1
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On)
2 sucelon 7017 . . . . . 6 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
31, 2sylib 208 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ∈ On)
4 simp1 1061 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5 on0eln0 5780 . . . . . . 7 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
65biimpar 502 . . . . . 6 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
763adant2 1080 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
8 omword2 7654 . . . . 5 (((suc 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → suc 𝐵 ⊆ (𝐴 ·𝑜 suc 𝐵))
93, 4, 7, 8syl21anc 1325 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → suc 𝐵 ⊆ (𝐴 ·𝑜 suc 𝐵))
10 sucidg 5803 . . . . 5 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
11 ssel 3597 . . . . 5 (suc 𝐵 ⊆ (𝐴 ·𝑜 suc 𝐵) → (𝐵 ∈ suc 𝐵𝐵 ∈ (𝐴 ·𝑜 suc 𝐵)))
1210, 11syl5 34 . . . 4 (suc 𝐵 ⊆ (𝐴 ·𝑜 suc 𝐵) → (𝐵 ∈ On → 𝐵 ∈ (𝐴 ·𝑜 suc 𝐵)))
139, 1, 12sylc 65 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ∈ (𝐴 ·𝑜 suc 𝐵))
14 suceq 5790 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
1514oveq2d 6666 . . . . 5 (𝑥 = 𝐵 → (𝐴 ·𝑜 suc 𝑥) = (𝐴 ·𝑜 suc 𝐵))
1615eleq2d 2687 . . . 4 (𝑥 = 𝐵 → (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·𝑜 suc 𝐵)))
1716rspcev 3309 . . 3 ((𝐵 ∈ On ∧ 𝐵 ∈ (𝐴 ·𝑜 suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·𝑜 suc 𝑥))
181, 13, 17syl2anc 693 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·𝑜 suc 𝑥))
19 suceq 5790 . . . . . 6 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2019oveq2d 6666 . . . . 5 (𝑥 = 𝑧 → (𝐴 ·𝑜 suc 𝑥) = (𝐴 ·𝑜 suc 𝑧))
2120eleq2d 2687 . . . 4 (𝑥 = 𝑧 → (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ↔ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)))
2221onminex 7007 . . 3 (∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) → ∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)))
23 vex 3203 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2423elon 5732 . . . . . . . . . . . . . 14 (𝑥 ∈ On ↔ Ord 𝑥)
25 ordzsl 7045 . . . . . . . . . . . . . 14 (Ord 𝑥 ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥))
2624, 25bitri 264 . . . . . . . . . . . . 13 (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥))
27 noel 3919 . . . . . . . . . . . . . . . 16 ¬ 𝐵 ∈ ∅
28 oveq2 6658 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
29 om0x 7599 . . . . . . . . . . . . . . . . . 18 (𝐴 ·𝑜 ∅) = ∅
3028, 29syl6eq 2672 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = ∅)
3130eleq2d 2687 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (𝐵 ∈ (𝐴 ·𝑜 𝑥) ↔ 𝐵 ∈ ∅))
3227, 31mtbiri 317 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥))
3332a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → (𝑥 = ∅ → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
34 simp3 1063 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 = suc 𝑤) → 𝑥 = suc 𝑤)
35 simp2 1062 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 = suc 𝑤) → ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧))
36 raleq 3138 . . . . . . . . . . . . . . . . . . 19 (𝑥 = suc 𝑤 → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ↔ ∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)))
37 vex 3203 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
3837sucid 5804 . . . . . . . . . . . . . . . . . . . 20 𝑤 ∈ suc 𝑤
39 suceq 5790 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤)
4039oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑤 → (𝐴 ·𝑜 suc 𝑧) = (𝐴 ·𝑜 suc 𝑤))
4140eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑤 → (𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ↔ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑤)))
4241notbid 308 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑤 → (¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ↔ ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑤)))
4342rspcv 3305 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ suc 𝑤 → (∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑤)))
4438, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (∀𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑤))
4536, 44syl6bi 243 . . . . . . . . . . . . . . . . . 18 (𝑥 = suc 𝑤 → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑤)))
4634, 35, 45sylc 65 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑤))
47 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = suc 𝑤 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑤))
4847eleq2d 2687 . . . . . . . . . . . . . . . . . . 19 (𝑥 = suc 𝑤 → (𝐵 ∈ (𝐴 ·𝑜 𝑥) ↔ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑤)))
4948notbid 308 . . . . . . . . . . . . . . . . . 18 (𝑥 = suc 𝑤 → (¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥) ↔ ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑤)))
5049biimpar 502 . . . . . . . . . . . . . . . . 17 ((𝑥 = suc 𝑤 ∧ ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑤)) → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥))
5134, 46, 50syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 = suc 𝑤) → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥))
52513expia 1267 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → (𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
5352rexlimdvw 3034 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → (∃𝑤 ∈ On 𝑥 = suc 𝑤 → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
54 ralnex 2992 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ↔ ¬ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧))
55 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → 𝐴 ∈ On)
5623a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → 𝑥 ∈ V)
57 simpl 473 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → Lim 𝑥)
58 omlim 7613 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·𝑜 𝑥) = 𝑧𝑥 (𝐴 ·𝑜 𝑧))
5955, 56, 57, 58syl12anc 1324 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥𝐴 ∈ On) → (𝐴 ·𝑜 𝑥) = 𝑧𝑥 (𝐴 ·𝑜 𝑧))
6059eleq2d 2687 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·𝑜 𝑥) ↔ 𝐵 𝑧𝑥 (𝐴 ·𝑜 𝑧)))
61 eliun 4524 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 𝑧𝑥 (𝐴 ·𝑜 𝑧) ↔ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·𝑜 𝑧))
62 limord 5784 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑥 → Ord 𝑥)
63623ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → Ord 𝑥)
6463, 24sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑥 ∈ On)
65 simp3 1063 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑧𝑥)
66 onelon 5748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
6764, 65, 66syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
68 suceloni 7013 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ On → suc 𝑧 ∈ On)
6967, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → suc 𝑧 ∈ On)
70 simp2 1062 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → 𝐴 ∈ On)
71 sssucid 5802 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧 ⊆ suc 𝑧
72 omwordi 7651 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ suc 𝑧 → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 suc 𝑧)))
7371, 72mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 suc 𝑧))
7467, 69, 70, 73syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 suc 𝑧))
7574sseld 3602 . . . . . . . . . . . . . . . . . . . . . . 23 ((Lim 𝑥𝐴 ∈ On ∧ 𝑧𝑥) → (𝐵 ∈ (𝐴 ·𝑜 𝑧) → 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)))
76753expia 1267 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥𝐴 ∈ On) → (𝑧𝑥 → (𝐵 ∈ (𝐴 ·𝑜 𝑧) → 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧))))
7776reximdvai 3015 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥𝐴 ∈ On) → (∃𝑧𝑥 𝐵 ∈ (𝐴 ·𝑜 𝑧) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)))
7861, 77syl5bi 232 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐴 ∈ On) → (𝐵 𝑧𝑥 (𝐴 ·𝑜 𝑧) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)))
7960, 78sylbid 230 . . . . . . . . . . . . . . . . . . 19 ((Lim 𝑥𝐴 ∈ On) → (𝐵 ∈ (𝐴 ·𝑜 𝑥) → ∃𝑧𝑥 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)))
8079con3d 148 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥𝐴 ∈ On) → (¬ ∃𝑧𝑥 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
8154, 80syl5bi 232 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥𝐴 ∈ On) → (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
8281expimpd 629 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
8382com12 32 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
84833ad2antl1 1223 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → (Lim 𝑥 → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
8533, 53, 843jaod 1392 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → ((𝑥 = ∅ ∨ ∃𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥) → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
8626, 85syl5bi 232 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → (𝑥 ∈ On → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
8786impr 649 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥))
88 simpl1 1064 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐴 ∈ On)
89 simprr 796 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → 𝑥 ∈ On)
90 omcl 7616 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) ∈ On)
9188, 89, 90syl2anc 693 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·𝑜 𝑥) ∈ On)
92 simpl2 1065 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → 𝐵 ∈ On)
93 ontri1 5757 . . . . . . . . . . . 12 (((𝐴 ·𝑜 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
9491, 92, 93syl2anc 693 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·𝑜 𝑥) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ·𝑜 𝑥)))
9587, 94mpbird 247 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → (𝐴 ·𝑜 𝑥) ⊆ 𝐵)
96 oawordex 7637 . . . . . . . . . . 11 (((𝐴 ·𝑜 𝑥) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
9791, 92, 96syl2anc 693 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝐴 ·𝑜 𝑥) ⊆ 𝐵 ↔ ∃𝑦 ∈ On ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
9895, 97mpbid 222 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)
99983adantr1 1220 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦 ∈ On ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)
100 simp3r 1090 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)
101 simp21 1094 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → 𝐵 ∈ (𝐴 ·𝑜 suc 𝑥))
102 simp11 1091 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → 𝐴 ∈ On)
103 simp23 1096 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → 𝑥 ∈ On)
104 omsuc 7606 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 suc 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
105102, 103, 104syl2anc 693 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → (𝐴 ·𝑜 suc 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
106101, 105eleqtrd 2703 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → 𝐵 ∈ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
107100, 106eqeltrd 2701 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
108 simp3l 1089 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → 𝑦 ∈ On)
109102, 103, 90syl2anc 693 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → (𝐴 ·𝑜 𝑥) ∈ On)
110 oaord 7627 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·𝑜 𝑥) ∈ On) → (𝑦𝐴 ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)))
111108, 102, 109, 110syl3anc 1326 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → (𝑦𝐴 ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)))
112107, 111mpbird 247 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → 𝑦𝐴)
113112, 100jca 554 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) ∧ (𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → (𝑦𝐴 ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
1141133expia 1267 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → ((𝑦 ∈ On ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) → (𝑦𝐴 ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)))
115114reximdv2 3014 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → (∃𝑦 ∈ On ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵 → ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
11699, 115mpd 15 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On)) → ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)
117116expcom 451 . . . . . 6 ((𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧) ∧ 𝑥 ∈ On) → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
1181173expia 1267 . . . . 5 ((𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → (𝑥 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)))
119118com13 88 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ On → ((𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)))
120119reximdvai 3015 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On (𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) ∧ ∀𝑧𝑥 ¬ 𝐵 ∈ (𝐴 ·𝑜 suc 𝑧)) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
12122, 120syl5 34 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐵 ∈ (𝐴 ·𝑜 suc 𝑥) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
12218, 121mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915   ciun 4520  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omeu  7665
  Copyright terms: Public domain W3C validator