| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpr2 | Structured version Visualization version GIF version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| elpr2.1 | ⊢ 𝐵 ∈ V |
| elpr2.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elpr2 | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V) | |
| 2 | elpr2.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | eleq1 2689 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
| 4 | 2, 3 | mpbiri 248 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ∈ V) |
| 5 | elpr2.2 | . . . 4 ⊢ 𝐶 ∈ V | |
| 6 | eleq1 2689 | . . . 4 ⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | |
| 7 | 5, 6 | mpbiri 248 | . . 3 ⊢ (𝐴 = 𝐶 → 𝐴 ∈ V) |
| 8 | 4, 7 | jaoi 394 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → 𝐴 ∈ V) |
| 9 | elprg 4196 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 10 | 1, 8, 9 | pm5.21nii 368 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∨ wo 383 = wceq 1483 ∈ wcel 1990 Vcvv 3200 {cpr 4179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: elopg 4934 elxr 11950 fprodex01 29571 nofv 31810 |
| Copyright terms: Public domain | W3C validator |