![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nofv | Structured version Visualization version GIF version |
Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.) |
Ref | Expression |
---|---|
nofv | ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1𝑜 ∨ (𝐴‘𝑋) = 2𝑜)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1 433 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) | |
2 | ndmfv 6218 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅)) |
4 | nofun 31802 | . . . . 5 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
5 | norn 31804 | . . . . 5 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1𝑜, 2𝑜}) | |
6 | fvelrn 6352 | . . . . . . . 8 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
7 | ssel 3597 | . . . . . . . 8 ⊢ (ran 𝐴 ⊆ {1𝑜, 2𝑜} → ((𝐴‘𝑋) ∈ ran 𝐴 → (𝐴‘𝑋) ∈ {1𝑜, 2𝑜})) | |
8 | 6, 7 | syl5com 31 | . . . . . . 7 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (ran 𝐴 ⊆ {1𝑜, 2𝑜} → (𝐴‘𝑋) ∈ {1𝑜, 2𝑜})) |
9 | 8 | impancom 456 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → (𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) ∈ {1𝑜, 2𝑜})) |
10 | 1on 7567 | . . . . . . . 8 ⊢ 1𝑜 ∈ On | |
11 | 10 | elexi 3213 | . . . . . . 7 ⊢ 1𝑜 ∈ V |
12 | 2on 7568 | . . . . . . . 8 ⊢ 2𝑜 ∈ On | |
13 | 12 | elexi 3213 | . . . . . . 7 ⊢ 2𝑜 ∈ V |
14 | 11, 13 | elpr2 4199 | . . . . . 6 ⊢ ((𝐴‘𝑋) ∈ {1𝑜, 2𝑜} ↔ ((𝐴‘𝑋) = 1𝑜 ∨ (𝐴‘𝑋) = 2𝑜)) |
15 | 9, 14 | syl6ib 241 | . . . . 5 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1𝑜 ∨ (𝐴‘𝑋) = 2𝑜))) |
16 | 4, 5, 15 | syl2anc 693 | . . . 4 ⊢ (𝐴 ∈ No → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1𝑜 ∨ (𝐴‘𝑋) = 2𝑜))) |
17 | 3, 16 | orim12d 883 | . . 3 ⊢ (𝐴 ∈ No → ((¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1𝑜 ∨ (𝐴‘𝑋) = 2𝑜)))) |
18 | 1, 17 | mpi 20 | . 2 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1𝑜 ∨ (𝐴‘𝑋) = 2𝑜))) |
19 | 3orass 1040 | . 2 ⊢ (((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1𝑜 ∨ (𝐴‘𝑋) = 2𝑜) ↔ ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1𝑜 ∨ (𝐴‘𝑋) = 2𝑜))) | |
20 | 18, 19 | sylibr 224 | 1 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1𝑜 ∨ (𝐴‘𝑋) = 2𝑜)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 ∨ w3o 1036 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ∅c0 3915 {cpr 4179 dom cdm 5114 ran crn 5115 Oncon0 5723 Fun wfun 5882 ‘cfv 5888 1𝑜c1o 7553 2𝑜c2o 7554 No csur 31793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-1o 7560 df-2o 7561 df-no 31796 |
This theorem is referenced by: nolesgn2o 31824 nosep1o 31832 nolt02o 31845 nosupbnd1lem5 31858 nosupbnd1lem6 31859 |
Copyright terms: Public domain | W3C validator |