MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptg Structured version   Visualization version   GIF version

Theorem elrnmptg 5375
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmptg (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
21rnmpt 5371 . . 3 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
32eleq2i 2693 . 2 (𝐶 ∈ ran 𝐹𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 r19.29 3072 . . . . 5 ((∀𝑥𝐴 𝐵𝑉 ∧ ∃𝑥𝐴 𝐶 = 𝐵) → ∃𝑥𝐴 (𝐵𝑉𝐶 = 𝐵))
5 eleq1 2689 . . . . . . . 8 (𝐶 = 𝐵 → (𝐶𝑉𝐵𝑉))
65biimparc 504 . . . . . . 7 ((𝐵𝑉𝐶 = 𝐵) → 𝐶𝑉)
76elexd 3214 . . . . . 6 ((𝐵𝑉𝐶 = 𝐵) → 𝐶 ∈ V)
87rexlimivw 3029 . . . . 5 (∃𝑥𝐴 (𝐵𝑉𝐶 = 𝐵) → 𝐶 ∈ V)
94, 8syl 17 . . . 4 ((∀𝑥𝐴 𝐵𝑉 ∧ ∃𝑥𝐴 𝐶 = 𝐵) → 𝐶 ∈ V)
109ex 450 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∃𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V))
11 eqeq1 2626 . . . . 5 (𝑦 = 𝐶 → (𝑦 = 𝐵𝐶 = 𝐵))
1211rexbidv 3052 . . . 4 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
1312elab3g 3357 . . 3 ((∃𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V) → (𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝐶 = 𝐵))
1410, 13syl 17 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝐶 = 𝐵))
153, 14syl5bb 272 1 (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200  cmpt 4729  ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  elrnmpti  5376
  Copyright terms: Public domain W3C validator